多模态系统中的自适应信息融合Toward Adaptive Information Fusion in Multimodal Systems |
|
课程网址: | http://videolectures.net/mlmi04uk_oviatt_tai/ |
主讲教师: | Sharon Oviatt |
开课单位: | 俄勒冈健康与科学大学 |
开课时间: | 2007-04-14 |
课程语种: | 英语 |
中文简介: | 信息融合技术是多模式系统设计的核心。在本次演讲中,我将总结最近关于用户多模式集成模式预测建模的工作,包括:(1)用户主导语音和笔多模式集成模式存在较大的个体差异;(2)这些模式几乎可以被识别出来随着时间的推移,个人用户立即保持高度一致,(3)他们对变化具有很强的抵抗力,即使用户有强烈的选择性强化或明确的指示来转换模式,(4)这些不同的模式似乎来自于持久的差异认知风格的用户。我还将讨论在负载下系统地巩固用户主导多模式集成模式的发现,包括任务难度增加和错误处理期间。最后,我将重点介绍我们正在进行的工作,它将预测用户建模与机器学习技术相结合,以加速,推广和提高多模式系统处理过程中信息融合的可靠性。将讨论该研究的意义,以设计具有显着改进的性能特征的自适应多模系统。 |
课程简介: | Techniques for information fusion are at the heart of multimodal system design. In this talk, I'll summarize recent work on predictive modeling of users' multimodal integration patterns, including that (1) there are large individual differences in users' dominant speech and pen multimodal integration patterns, (2) these patterns can be identified almost immediately and remain highly consistent for individual users over time, (3) they are highly resistant to change, even when users are given strong selective reinforcement or explicit instructions to switch patterns, and (4) these distinct patterns appear to derive from enduring differences among users in cognitive style. I'll also discuss findings on systematic entrenchment of users' dominant multimodal integration pattern when under load, including as task difficulty increases and during error handling. I'll conclude by highlighting work we are now pursuing that combines predictive user modeling with machine learning techniques to accelerate, generalize, and improve the reliability of information fusion during multimodal system processing. Implications of this research will be discussed for the design of adaptive multimodal systems with substantially improved performance characteristics. |
关 键 词: | 多模式系统; 信息融合技术; 多模式集成模式预测建模 |
课程来源: | 视频讲座网 |
最后编审: | 2019-06-30:yuh |
阅读次数: | 40 |