0


使用贝叶斯矩阵分解来预测来自化学和基因组核的药物 - 靶标相互作用

Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization
课程网址: http://videolectures.net/mlsb2012_gonen_target/  
主讲教师: Mehmet Gönen
开课单位: 阿尔托大学
开课时间: 2012-10-23
课程语种: 英语
中文简介:
**动机:**识别药物化合物和目标蛋白质之间的相互作用具有很大的作用 在已知疾病的药物发现过程中具有实际重要性。现有数据库包含 很少有实验验证的药物 - 靶标相互作用和配方成功 用于预测交互的计算方法仍然具有挑战性。\\ **结果:**在本研究中,我们考虑来自人类的四种不同的药物 - 靶标相互作用网络 涉及酶,离子通道,G蛋白偶联受体和核受体。然后我们 提出一种新的贝叶斯公式,结合降维,矩阵分解, 和二元分类用于仅使用化学物质预测药物 - 靶标相互作用网络 药物化合物与靶蛋白之间的基因组相似性之间的相似性新奇的 我们的方法来自联合贝叶斯药物化合物和靶标的配方 利用相似性和估计交互网络将蛋白质转化为统一的子空间 子空间。我们建议使用变分近似以获得有效的 推理方案并给出其详细的推导。最后,我们展示了我们的表现 在三种不同的情景中提出的方法:(a)使用低维的探索性数据分析 预测,(b)预测样品外化合物的相互作用,以及(c)预测 给定网络的未知交互。\\
课程简介: **Motivation:** Identifying interactions between drug compounds and target proteins has a great practical importance in the drug discovery process for known diseases. Existing databases contain very few experimentally validated drug-target interactions and formulating successful computational methods for predicting interactions remains challenging.\\ **Results:** In this study, we consider four different drug-target interaction networks from humans involving enzymes, ion channels, G-protein-coupled receptors, and nuclear receptors. We then propose a novel Bayesian formulation that combines dimensionality reduction, matrix factorization, and binary classification for predicting drug- target interaction networks using only chemical similarity between drug compounds and genomic similarity between target proteins. The novelty of our approach comes from the joint Bayesian formulation of projecting drug compounds and target proteins into a unified subspace using the similarities and estimating the interaction network in that subspace. We propose using a variational approximation in order to obtain an efficient inference scheme and give its detailed derivations. Lastly, we demonstrate the performance of our proposed method in three different scenarios: (a) exploratory data analysis using low-dimensional projections, (b) predicting interactions for the out-of-sample drug compounds, and (c) predicting unknown interactions of the given network.\\ 
关 键 词: 预测交互; 靶标相互作用; 贝叶斯公式
课程来源: 视频讲座网
最后编审: 2021-12-22:liyy
阅读次数: 93