0


使用线性编程方法进行高效,基于数据的网络推理

Efficient, data-based network inference using a linear programming approach
课程网址: http://videolectures.net/mlsb2012_knapp_efficient/  
主讲教师: Bettina Knapp
开课单位: 德累斯顿工业大学
开课时间: 2012-10-23
课程语种: 英语
中文简介:
**动机:**近年来,技术发展促进了生物学高通量数据的便利测量。这导致基因评级数据的定性和定量改进,并且提供了更详细地理解复杂生物系统的潜力。例如使用RNA干扰的扰动实验是高含量,高通量的筛选基因的简单且快速的方法。因此,阐明它们的基因功能。然而,从该数据推断信号转导网络是一项具有挑战性的任务。其中一个问题是随着节点数量的增加,可能的网络拓扑数量呈指数增长。在这里,我们将网络推理问题制定为线性优化程序,即使对于大规模问题也可以有效地解决。\\ **结果:**基于不同大小网络的模拟数据,我们表明我们的方法优于最近发布的方法,特别是当应用于大规模问题时。与其他方法相比,使用我们的方法,我们实现了更高的灵敏度和特异性值,并显着缩短了计算时间。此外,我们表明我们的方法可以处理噪声和丢失的数据,并且可以轻松地集成先验知识,从而改善结果。最后,我们使用研究ErbB信令的实际数据集来重建底层网络拓扑。基于STRING数据库中给出的基因相互作用,我们比随机猜测更准确。我们能够重建已知的已知交互,并识别潜在的新交互。
课程简介: **Motivation:** In the recent years, technical developments enabled the facilitated measurements of biological high-throughput data. This results in a qualitative and a quantitative improvement of the gene- rated data and offers the potential to understand complex biological systems in more detail. Perturbation experiments, for example using RNA interference, are an easy and fast way to screen genes in a high-content, high-throughput manner and thereby, to elucidate their gene function. The inference of signal transduction networks from this data, however, is a challenging task. One of the problems is the exponentially increasing number of possible network topologies with an increasing number of nodes. Here, we formulate the problem of net- work inference as a linear optimization program which can be solved efficiently even for large-scale problems.\\ **Results:** Based on simulated data for networks of different sizes we show that our method outperforms a recently published approach, especially when applied to large-scale problems. Using our approach, we achieve increased sensitivity and specificity values and a signi- ficant reduction in computation time in comparison to the other approach. Furthermore, we show that our method can deal with noisy and missing data and that prior knowledge can be easily integrated and thus, improves results. Finally, we use a real data set studying ErbB signaling to reconstruct the underlying network topology. Based on the gene interactions as given in the STRING database we achieve an accuracy much better than random guessing. We were able to reconstruct several already known interactions, as well as identify potential new ones.
关 键 词: 高通量数据; 便利测量; 基因评级
课程来源: 视频讲座网
最后编审: 2021-12-22:liyy
阅读次数: 61