统计学概论Statistical Learning Theory |
|
课程网址: | http://videolectures.net/mlss03_bousquet_slt/ |
主讲教师: | Olivier Bousquet |
开课单位: | 谷歌公司 |
开课时间: | 2007-02-25 |
课程语种: | 英语 |
中文简介: | 本课程将详细介绍学习理论,重点是分类问题。将展示如何获得某些类型算法的泛化误差的(pobabilistic)界限。主题将是:*概率不等式和集中不等式*联合边界,链接*测量函数类的大小,Vapnik Chervonenkis维度,破碎维数和Rademacher平均值*具有实值函数的分类一些概率理论知识会有所帮助但是由于将引入主要工具,因此不需要。 |
课程简介: | This course will give a detailed introduction to learning theory with a focus on the classification problem. It will be shown how to obtain (pobabilistic) bounds on the generalization error for certain types of algorithms. The main themes will be: * probabilistic inequalities and concentration inequalities * union bounds, chaining * measuring the size of a function class, Vapnik Chervonenkis dimension, shattering dimension and Rademacher averages * classification with real-valued functions Some knowledge of probability theory would be helpful but not required since the main tools will be introduced. |
关 键 词: | 统计学; 统计分类; 泛化误差 |
课程来源: | 视频讲座网 |
最后编审: | 2020-06-08:cxin |
阅读次数: | 144 |