广义主成分分析(GPCA)Generalized Principal Component Analysis (GPCA) |
|
课程网址: | http://videolectures.net/mlss05au_vidal_gpca/ |
主讲教师: | Rene Vidal |
开课单位: | 约翰霍普金斯大学 |
开课时间: | 2007-02-25 |
课程语种: | 英语 |
中文简介: | 数据分割通常是鸡和蛋的问题。为了估计模型的混合,需要首先分割数据,并且为了分割数据,需要知道模型参数。因此,数据分割通常分两个阶段来解决.1。数据聚类和2.模型拟合。其他迭代方法使用,例如,期望最大化(EM)算法。本演讲将展示对于具有多线性结构(包括未知和变化维度的聚类子空间)的广泛类型的分割问题,鸡和蛋的困境可以解决如下:1。将一组多项式拟合到所有数据点,没有聚类数据2.从这些多项式的导数中获得每个组的模型参数。还将介绍GPCA在图像/视频/运动分割,面部聚类和混合动力学模型系统识别中的应用。 |
课程简介: | Data segmentation is usually though of as a chicken-and-egg problem. In order to estimate a mixture of models one needs to first segment the data, and in order to segment the data one needs to know the model parameters. Therefore, data segmentation is usually solved in two stages 1. Data clustering and 2. Model fitting. Other iterative methods use, e.g. the Expectation Maximization (EM) algorithm. This talk will show that for a wide class of segmentation problems with multi-linear structure (including clustering subspaces of unknown and varying dimensions), the chicken-and-egg dilemma can be tackled as follows: 1. Fit a set of polynomials to all data points, without clustering the data 2. Obtain the model parameters for each group from the derivatives of these polynomials. Applications of GPCA to image/video/motion segmentation, face clustering, and identification of hybrid dynamical models systems will also be presented. |
关 键 词: | 数据分割; 估计模型; 多线性结构 |
课程来源: | 视频讲座网 |
最后编审: | 2019-07-10:lxf |
阅读次数: | 176 |