AdaBoost动力学The Dynamics of AdaBoost |
|
课程网址: | http://videolectures.net/mlss05us_rudin_da/ |
主讲教师: | Cynthia Rudin |
开课单位: | 麻省理工学院 |
开课时间: | 2007-02-25 |
课程语种: | 英语 |
中文简介: | AdaBoost是最成功和最受欢迎的学习算法之一,它是一种分类算法,旨在从“弱”学习算法构建“强”分类器。就在九年前AdaBoost发展之后,科学家们基于边缘的推广边界来解释AdaBoost的出乎意料的良好表现。他们的结果预测,如果AdaBoost始终达到“最大保证金”解决方案,则会产生最佳性能。然而,AdaBoost是否实现了最大利润率解决方案?在此期间进行的实证和理论研究推测答案是“是”。为了回答这个问题,我们着眼于AdaBoost的动态。我们简化了AdaBoost以揭示非线性迭代映射。然后,我们分析了AdaBoost在发现循环行为的情况下的收敛性;这种循环行为提供了回答AdaBoost是否始终最大化保证金的问题的关键。事实证明,这个问题的答案结果与被认为是真实的情况相反!在本次演讲中,我将介绍AdaBoost,描述我们对AdaBoost的动态系统分析,简要提及一种新的增强算法,该算法始终以最快的收敛速度最大化余量,如果时间允许,我将揭示一个令人惊讶的新结果关于AdaBoost和二分排名的问题。 |
课程简介: | One of the most successful and popular learning algorithms is AdaBoost, which is a classification algorithm designed to construct a "strong" classifier from a "weak" learning algorithm. Just after the development of AdaBoost nine years ago, scientists derived margin- based generalization bounds to explain AdaBoost's unexpectedly good performance. Their result predicts that AdaBoost yields the best possible performance if it always achieves a "maximum margin" solution. Yet, does AdaBoost achieve a maximum margin solution? Empirical and theoretical studies conducted within this period conjecture the answer to be "yes". In order to answer this question, we look toward AdaBoost's dynamics. We simplify AdaBoost to reveal a nonlinear iterated map. We then analyze the convergence of AdaBoost for cases where cyclic behavior is found; this cyclic behavior provides the key to answering the question of whether AdaBoost always maximizes the margin. As it turns out, the answer to this question turns out to be the opposite of what was thought to be true! In this talk, I will introduce AdaBoost, describe our analysis of AdaBoost when viewed as a dynamical system, briefly mention a new boosting algorithm which always maximizes the margin with a fast convergence rate, and if time permits, I will reveal a surprising new result about AdaBoost and the problem of bipartite ranking. |
关 键 词: | 分类算法; 非线性迭代映射; 动态系统 |
课程来源: | 视频讲座网 |
最后编审: | 2019-07-10:lxf |
阅读次数: | 76 |