首页数学
   首页函数论
   首页泛函分析
0


特征空间中的指数族

Exponential Families in Feature Space
课程网址: http://videolectures.net/mlss06au_vishwanathan_effs/  
主讲教师: S.V.N. Vishwanathan
开课单位: 加州大学圣克鲁兹分校
开课时间: 2007-02-25
课程语种: 英语
中文简介:
在本入门课程中,我们将讨论如何将对数线性模型扩展到特征空间。 这些对数线性模型已经由统计学家长期以指数概率分布族的名义进行了研究。 我们提供了一个统一的框架,可用于将许多现有的内核算法视为特殊情况。 我们的框架还允许我们推导出现有算法的许多自然概括。 特别是,我们展示了如何恢复高斯过程,支持向量机,多类判别和序列注释(通过条件随机场)。 我们还展示了处理缺失数据并对特征空间中的条件随机场执行MAP估计。 在前两个讲座中将详细介绍该课程的必要背景。 了解线性代数和熟悉功能分析将会有所帮助。
课程简介: In this introductory course we will discuss how log linear models can be extended to feature space. These log linear models have been studied by statisticians for a long time under the name of exponential family of probability distributions. We provide a unified framework which can be used to view many existing kernel algorithms as special cases. Our framework also allows us to derive many natural generalizations of existing algorithms. In particular, we show how we can recover Gaussian Processes, Support Vector Machines, multi-class discrimination, and sequence annotation (via Conditional Random Fields). We also show to deal with missing data and perform MAP estimation on Conditional Random Fields in feature space. The requisite background for the course will be covered briskly in the first two lectures. Knowledge of linear algebra and familiarity with functional analysis will be helpful.
关 键 词: 对数线性模型; 特征空间; 内核算法
课程来源: 视频讲座网
最后编审: 2019-07-16:cjy
阅读次数: 50