首页自然科学
   首页数学
   首页函数论
0


通过运输多面体的直方图上的内核

Kernels on histograms through the transportation polytope
课程网址: http://videolectures.net/mlss06tw_cuturi_khttp/  
主讲教师: Marco Cuturi
开课单位: 京都大学
开课时间: 2007-02-25
课程语种: 英语
中文简介:
对于两个积分直方图和相等和,由ad×d成本矩阵T参数化的r和c之间的Monge-Kantorovich距离MK(r,c)是在运输多面体U的矩阵F上取得的所有成本的最小值(r, C)。最近的结果表明这个距离不是负定的,因此,通过勋伯格众所周知的结果,对于所有t> 0,可能不是一个正定的核。而不是直接使用MK来定义r和c之间的相似性,我们提出在这个谈话内核r和c基于整个传输多面体U(r,c)。我们证明了当r和c具有二进制计数时,这相当于说明r和c描述了相等大小的点的云,由成本矩阵T引起的它们的革兰矩阵的永久性是在T的有利条件下的正定核。我们还表明,通过运输矩阵和Young Tableaux之间的Robinson-Schensted-Knuth对应,多面体U(r,c)的体积,即整体运输计划的数量,是r和c中的正定量。
课程简介: For two integral histograms and of equal sum, the Monge-Kantorovich distance MK(r,c) between r and c parameterized by a d × d cost matrix T is the minimum of all costs taken over matrices F of the transportation polytope U(r,c). Recent results suggest that this distance is not negative definite, and hence, through Schoenberg's well-known result, may not be a positive definite kernel for all t > 0. Rather than using directly MK to define a similarity between r and c, we present in this talk kernels on r and c based on the whole transportation polytope U(r,c). We prove that when r and c have binary counts, which is equivalent to stating that r and c depict clouds of points of equal size, the permanent of their Gram matrix induced by the cost matrix T is a positive definite kernel under favorable conditions on T. We also show that the volume of the polytope U(r,c), that is the number of integral transportation plans, is a positive definite quantity in r and c through the Robinson-Schensted-Knuth correspondence between transportation matrices and Young Tableaux.
关 键 词: 积分直方图; 传输多面体; 正定核
课程来源: 视频讲座网
最后编审: 2019-07-16:cjy
阅读次数: 76