计算生物学中的核方法Kernel Methods in Computational Biology |
|
课程网址: | http://videolectures.net/mlss06tw_vert_kmcb/ |
主讲教师: | Jean-Philippe Vert |
开课单位: | 国立巴黎高等矿业学院 |
开课时间: | 2007-02-25 |
课程语种: | 英语 |
中文简介: | 计算生物学和化学中的许多问题可以形式化为经典的统计问题,例如模式识别,回归或降维,但需要注意的是数据通常不是矢量。 实际上,诸如基因序列,小分子,蛋白质3D结构或系统发育树之类的对象仅具有一些特定结构,其包含统计问题的相关信息但很难被编码成有限维向量表示。 内核方法是一类非常适合此类问题的算法。 实际上,它们将最初为矢量设计的许多统计方法的适用性扩展到几乎任何类型的数据,而无需显式矢量化数据。 为非向量扩展支付的代价是需要在对象之间定义正定核,形式上等同于数据的隐式向量化。 |
课程简介: | Many problems in computational biology and chemistry can be formalized as classical statistical problems, e.g., pattern recognition, regression or dimension reduction, with the caveat that the data are often not vectors. Indeed objects such as gene sequences, small molecules, protein 3D structures or phylogenetic trees, to name just a few, have particular structures which contain relevant information for the statistical problem but can hardly be encoded into finite-dimensional vector representations. Kernel methods are a class of algorithms well suited for such problems. Indeed they extend the applicability of many statistical methods initially designed for vectors to virtually any type of data, without the need for explicit vectorization of the data. The price to pay for this extension to non-vectors is the need to define a positive definite kernel between the objects, formally equivalent to an implicit vectorization of the data. |
关 键 词: | 计算生物学; 统计问题; 内核方法 |
课程来源: | 视频讲座网 |
最后编审: | 2020-10-22:chenxin |
阅读次数: | 77 |