基于L1的松弛用于稀疏度恢复和高维体系中的图形模型选择L1-based relaxations for sparsity recovery and graphical model selection in the high-dimensional regime |
|
课程网址: | http://videolectures.net/mlss06tw_wainwright_brsrg/ |
主讲教师: | Martin J. Wainwright |
开课单位: | 加州大学伯克利分校 |
开课时间: | 2007-02-25 |
课程语种: | 英语 |
中文简介: | 估计嵌入在噪声中的稀疏信号的问题出现在各种环境中,包括信号去噪和近似,以及图形模型选择。 这些问题的自然优化理论公式涉及“范数”约束(即,对非零系数的数量的惩罚),这通常导致NP难问题。 一种自然的方法是考虑使用-norm作为计算上易处理的替代,正如在信号处理和统计中所追求的那样。 |
课程简介: | The problem of estimating a sparse signal embedded in noise arises in various contexts, including signal denoising and approximation, as well as graphical model selection. The natural optimization-theoretic formulation of such problems involves "norm" constraints (i.e., penalties on the number of non-zero coefficients), which leads to NP-hard problems in general. A natural approach is to consider the use of the -norm as a computationally tractable surrogate, as has been pursued in both signal processing and statistics. |
关 键 词: | 稀疏信号; 图形模型选择; 自然优化理论公式 |
课程来源: | 视频讲座网 |
最后编审: | 2019-08-09:cjy |
阅读次数: | 88 |