0


基于L1的松弛用于稀疏度恢复和高维体系中的图形模型选择

L1-based relaxations for sparsity recovery and graphical model selection in the high-dimensional regime
课程网址: http://videolectures.net/mlss06tw_wainwright_brsrg/  
主讲教师: Martin J. Wainwright
开课单位: 加州大学伯克利分校
开课时间: 2007-02-25
课程语种: 英语
中文简介:
估计嵌入在噪声中的稀疏信号的问题出现在各种环境中,包括信号去噪和近似,以及图形模型选择。 这些问题的自然优化理论公式涉及“范数”约束(即,对非零系数的数量的惩罚),这通常导致NP难问题。 一种自然的方法是考虑使用-norm作为计算上易处理的替代,正如在信号处理和统计中所追求的那样。
课程简介: The problem of estimating a sparse signal embedded in noise arises in various contexts, including signal denoising and approximation, as well as graphical model selection. The natural optimization-theoretic formulation of such problems involves "norm" constraints (i.e., penalties on the number of non-zero coefficients), which leads to NP-hard problems in general. A natural approach is to consider the use of the -norm as a computationally tractable surrogate, as has been pursued in both signal processing and statistics.
关 键 词: 稀疏信号; 图形模型选择; 自然优化理论公式
课程来源: 视频讲座网
最后编审: 2019-08-09:cjy
阅读次数: 88