0


在线学习,遗憾最小化和博弈论

Online Learning, Regret Minimization, and Game Theory
课程网址: http://videolectures.net/mlss08au_blum_org/  
主讲教师: Avrim Blum
开课单位: 卡内基梅隆大学
开课时间: 2008-05-07
课程语种: 英语
中文简介:
教程的第一部分将讨论用于在不确定环境中做出决策的自适应算法(例如,如果我必须在我知道今天的交通流量之前做出决定,我应该采取什么样的工作方式?)以及与博弈论中的中心概念的联系( 例如,如果每个人都以这种方式调整他们的行为,我们可以说一下交通将如何整体行为?)他将讨论外部和内部遗憾的概念,“结合专家意见”和“沉睡专家”问题的算法,隐含指定问题的算法,以及与纳什和相关均衡的博弈论概念的联系。 tha教程的第二部分将介绍最近一些关于学习相似性函数的工作,这些函数不一定是合法的内核。 这里的高级问题是:如果你有一个数据点之间的相似性度量,它与你的分类问题有多密切相关,以便对学习有用?
课程简介: The first part of tha tutorial will discuss adaptive algorithms for making decisions in uncertain environments (e.g., what route should I take to work if I have to decide before I know what traffic will like today?) and connections to central concepts in game theory (e.g., what can we say about how traffic will behave overall if everyone is adapting their behavior in such a way?). He will discuss the notions of external and internal regret, algorithms for "combining expert advice" and "sleeping experts" problems, algorithms for implicitly specified problems, and connections to game-theoretic notions of Nash and correlated equilibria. The second part of tha tutorial will be about some recent work on learning with similarity functions that are not necessarily legal kernels. The high-level question here is: if you have a measure of similarity between data points, how closely related does it have to be to your classification problem in order to be useful for learning?
关 键 词: 自适应算法; 博弈论; 相似性度量
课程来源: 视频讲座网
最后编审: 2020-06-22:chenxin
阅读次数: 204