首页统计学
   首页概率论
   首页数学
0


图形模型中的推理

Inference in Graphical Models
课程网址: http://videolectures.net/mlss08au_caetano_grmo/  
主讲教师: Tibério Caetano
开课单位: 澳大利亚信息通信技术研究中心
开课时间: 2008-03-12
课程语种: 英语
中文简介:
这个简短的课程将涵盖图形推理的基础知识楷模。 它将从解释概率图形理论开始模型,包括条件独立和因子分解的概念它们如何在马尔可夫随机场和贝叶斯网络中出现。 他会的然后介绍执行精确概率的基本方法这种模型中的推理,包括变量等算法消除,信念传播和交叉树。 他也将简要介绍一下讨论了一些用于执行近似推理的当前方当确切推断不可行时。 最后,他将说明一系列的真正的问题,其解决方案可以表示为图形推理楷模。
课程简介: This short course will cover the basics of inference in graphical models. It will start by explaining the theory of probabilistic graphical models, including concepts of conditional independence and factorisation and how they arise in both Markov random fields and Bayesian Networks. He will then present the fundamental methods for performing exact probabilistic inference in such models, which include algorithms like variable elimination, belief propagation and Junction Trees. He will also briefly discuss some of the current methods for performing approximate inference when exact inference is not feasible. Finally, he will illustrate a range of real problems whose solutions can be formulated as inference in graphical models.
关 键 词: 图形推理; 贝叶斯网络交叉树
课程来源: 视频讲座网
最后编审: 2021-01-15:yumf
阅读次数: 98