统计机器学习导论Introduction to Statistical Machine Learning |
|
课程网址: | http://videolectures.net/mlss08au_hutter_isml/ |
主讲教师: | Marcus Hutter |
开课单位: | IDSIA公司 |
开课时间: | 2008-03-11 |
课程语种: | 英语 |
中文简介: | 他的教程的第一部分简要概述了统计机器学习的基本方法和应用。其他发言者将详细介绍或以此介绍为基础。统计机器学习涉及通过构建可用于进行预测和决策的随机模型来从观察数据中学习的算法和技术的开发。涵盖的主题包括贝叶斯推理和最大似然建模;回归,分类,密度估计,聚类,主成分分析;参数,半参数和非参数模型;基函数,神经网络,核方法和图形模型;确定性和随机优化;过度拟合,正则化和验证。 |
课程简介: | The first part of his tutorial provides a brief overview of the fundamental methods and applications of statistical machine learning. The other speakers will detail or built upon this introduction. Statistical machine learning is concerned with the development of algorithms and techniques that learn from observed data by constructing stochastic models that can be used for making predictions and decisions. Topics covered include Bayesian inference and maximum likelihood modeling; regression, classification, density estimation, clustering, principal component analysis; parametric, semi-parametric, and non-parametric models; basis functions, neural networks, kernel methods, and graphical models; deterministic and stochastic optimization; overfitting, regularization, and validation. |
关 键 词: | 统计机器; 观察数据; 贝叶斯推理 |
课程来源: | 视频讲座网 |
最后编审: | 2021-05-14:yumf |
阅读次数: | 158 |