冗余位向量搜索高维区域Redundant Bit Vectors for Searching High-Dimensional Regions |
|
课程网址: | http://videolectures.net/mlws04_platt_rbvsh/ |
主讲教师: | John Platt |
开课单位: | 微软公司 |
开课时间: | 2007-02-25 |
课程语种: | 英语 |
中文简介: | 许多多媒体应用程序减少了搜索高维区域的数据库以查看查询点是否有任何重叠的问题。有大量基于树的索引技术的文献,所有这些都在存储区域的足够高的尺寸下被破坏。我们已经创建了一种新的数据结构,称为冗余位向量(RBV),可以有效地索引高维区域。使用RBV,我们可以搜索240K 64维超球体的数据库,每个球体具有不同的半径,比其快56倍。优化的学习扫描。 RBV是通用的,可能对机器学习应用程序有用。 |
课程简介: | Many multimedia applications reduce to the problem of searching a database of high-dimensional regions to see whether any overlap a query point. There is a large literature of indexing techniques based on trees, all of which break down given high enough dimension of stored regions. We have created a new data structure, called redundant bit vectors (RBVs), that can effectively index high-dimensional regions.Using RBVs, we can search a database of 240K 64-dimensional hyperspheres, each with a different radius, up to 56 times faster than an optimized learning scan. RBVs are general-purpose, and may be useful for machine learning applications. |
关 键 词: | 高维区域; 数据结构; 冗余位向量; RBV |
课程来源: | 视频讲座网 |
最后编审: | 2020-06-08:吴雨秋(课程编辑志愿者) |
阅读次数: | 62 |