结构化数据学习-结构化输出Learning with structured data - structured outputs |
|
课程网址: | http://videolectures.net/mmdss07_gallinari_lsd/ |
主讲教师: | Patrick Gallinari |
开课单位: | 巴黎第六大学 |
开课时间: | 2007-11-26 |
课程语种: | 英语 |
中文简介: | 我们专注于结构化产出的预测。一个经典的例子是序列标记,应用于语音,视觉,自然语言或生物学。除了序列之外,结构化数据(如树,格子或图形)的预测也出现在许多领域中。结构化预测通常被视为多类分类的扩展。它被认为是一个具有挑战性的问题,因为输出空间的大小随着输出变量之间潜在依赖性的数量而急剧增加。最近在ML社区中提出了几种方法来克服这种复杂性,并且该领域仍然很大程度上是开放的。我们将对这些方法进行回顾,并讨论其潜力和局限性。这些不同的想法将用自然语言处理和文本挖掘应用程序来说明。 |
课程简介: | We focus on the prediction of structured outputs. A classical example is sequence labeling with applications in speech, vision, natural language or biology. Beyond sequences, the prediction of structured data, like trees, lattices or graphs also occurs in many domains. Structured prediction is usually considered as an extension of multi-class classification. It is considered as a challenging problem since the size of the output space increases drastically with the number of potential dependencies between output variables. Several methods have been recently proposed in the ML community in order to overcome this complexity and the domain is still largely open. We will provide a review of these methods and discuss there potential and limitations. These different ideas will be illustrated with Natural language processing and text mining applications. |
关 键 词: | 结构化产出; 序列标记; 文本挖掘 |
课程来源: | 视频讲座网 |
最后编审: | 2019-07-24:cwx |
阅读次数: | 40 |