时变图形模型:逆向工程和分析重布线网络Time Varying Graphical Models: Reverse Engineering and Analyzing Rewiring Networks |
|
课程网址: | http://videolectures.net/nips09_xing_tvgmrearn/ |
主讲教师: | Eric P. Xing |
开课单位: | 卡内基梅隆大学 |
开课时间: | 2010-01-19 |
课程语种: | 英语 |
中文简介: | 动态系统(例如社交社区或活细胞)中的实体之间的关系信息的合理表示是随着时间的推移在拓扑上重新布线和语义演变的随机网络。尽管有关静态或时间不变网络建模的丰富文献,但直到最近,在重新布线网络的动态过程建模以及在无法观察时恢复这些网络的工作还很少。在本次演讲中,我将基于时间演变的概率图形模型(如TV GGM,TV MRF和TV DBN),以及用于估计非平稳时间下此类模型结构的几种新算法,提出一种新的形式,用于建模网络随时间演变。一系列节点属性。我将在美国参议院根据其投票历史恢复潜在的社会网络序列,并在微阵列时间过程中在果蝇的生命周期中通过超过4000个基因的基因网络展示一些有希望的结果,仅在时间分辨率受采样频率的限制。我还将描述所提方法的渐近稀疏性的一些理论结果。 |
课程简介: | A plausible representation of the relational information among entities in dynamic systems such as a social community or a living cell is a stochastic network that is topologically rewiring and semantically evolving over time. While there is a rich literature in modeling static or temporally invariant networks, until recently, little has been done toward modeling the dynamic processes underlying rewiring networks, and on recovering such networks when they are not observable. In this talk, I will present a new formalism for modeling network evolution over time based on time-evolving probabilistic graphical models, such as TV-GGM, TV-MRF, and TV-DBN, and several new algorithms for estimating the structure of such models underlying nonstationary time-series of nodal attributes. I will show some promising results on recovering the latent sequence of evolving social networks in the US Senate based it voting history, and the gene networks over more than 4000 genes during the life cycle of Drosophila melanogaster from microarray time course, at a time resolution only limited by sample frequency. I will also sketch some theoretical results on the asymptotic sparsistency of the proposed methods. |
关 键 词: | 动态系统; 拓扑; 网络建模 |
课程来源: | 视频讲座网 |
最后编审: | 2019-09-06:lxf |
阅读次数: | 120 |