0


视觉识别的核心描述符

Kernel Descriptors for Visual Recognition
课程网址: http://videolectures.net/nips2010_bo_kdvr/  
主讲教师: Liefeng Bo
开课单位: 华盛顿大学
开课时间: 2011-03-25
课程语种: 英语
中文简介:
低级图像特征的设计对于计算机视觉算法至关重要。方向直方图,例如SIFT~ \ cite {Lowe2004Distinctive}和HOG~ \ cite {Dalal2005Histograms}中的方位直方图,是视觉对象和场景识别最成功和最受欢迎的特征。我们突出显示方向直方图的内核视图,并显示它们相当于图像块上的某种类型的匹配内核。这种新颖的视图允许我们设计一系列内核描述符,它们提供统一的原理框架,将像素属性(渐变,颜色,局部二进制模式,\等)转换为紧凑的补丁级别功能。特别地,我们引入三种类型的匹配内核来测量图像块之间的相似性,并使用核主成分分析(KPCA)〜\ cite {Scholkopf1998Nonlinear}从这些匹配内核构造紧凑的低维内核描述符。内核描述符易于设计,可以将任何类型的像素属性转换为补丁级别的功能。它们优于经过仔细调整和复杂的功能,包括SIFT和深层信仰网络。我们报告了标准图像分类基准测试的卓越性能:场景15,加州理工学院101,CIFAR10和CIFAR10 ImageNet。
课程简介: The design of low-level image features is critical for computer vision algorithms. Orientation histograms, such as those in SIFT~\cite{Lowe2004Distinctive} and HOG~\cite{Dalal2005Histograms}, are the most successful and popular features for visual object and scene recognition. We highlight the kernel view of orientation histograms, and show that they are equivalent to a certain type of match kernels over image patches. This novel view allows us to design a family of kernel descriptors which provide a unified and principled framework to turn pixel attributes (gradient, color, local binary pattern, \etc) into compact patch-level features. In particular, we introduce three types of match kernels to measure similarities between image patches, and construct compact low-dimensional kernel descriptors from these match kernels using kernel principal component analysis (KPCA)~\cite{Scholkopf1998Nonlinear}. Kernel descriptors are easy to design and can turn any type of pixel attribute into patch-level features. They outperform carefully tuned and sophisticated features including SIFT and deep belief networks. We report superior performance on standard image classification benchmarks: Scene-15, Caltech-101, CIFAR10 and CIFAR10-ImageNet.
关 键 词: 低级图像; 视觉算法; 内核视图
课程来源: 视频讲座网
最后编审: 2019-07-25:cwx
阅读次数: 81