0


不完整数据的功能集嵌入

Feature Set Embedding for Incomplete Data
课程网址: http://videolectures.net/nips2010_grangier_fse/  
主讲教师: David Grangier
开课单位: 美国国家实验室
开课时间: 2011-03-25
课程语种: 英语
中文简介:
我们针对分类问题提出了一种新的学习策略,其中列车和/或测试数据缺少特征。在以前的工作中,实例表示为来自某个特征空间的向量,并且一个实体被强制插入缺失值或考虑特定于实例的子空间。相反,我们的方法将实例视为(特征,值)对的集合,它们自然地处理缺失值的情况。在此框架的基础上,我们提出了集合的分类策略。我们的建议将(特征,值)对映射到嵌入空间,然后非线性组合嵌入向量集。嵌入和组合参数在最终分类目标上共同学习。这种简单的策略允许在编码嵌入步骤中的特征的先验知识方面具有很大的灵活性,并且与多个数据集上的替代解决方案相比产生有利的结果。
课程简介: We present a new learning strategy for classification problems in which train and/or test data suffer from missing features. In previous work, instances are represented as vectors from some feature space and one is forced to impute missing values or to consider an instance-specific subspace. In contrast, our method considers instances as sets of (feature,value) pairs which naturally handle the missing value case. Building onto this framework, we propose a classification strategy for sets. Our proposal maps (feature,value) pairs into an embedding space and then non-linearly combines the set of embedded vectors. The embedding and the combination parameters are learned jointly on the final classification objective. This simple strategy allows great flexibility in encoding prior knowledge about the features in the embedding step and yields advantageous results compared to alternative solutions over several datasets.
关 键 词: 测试数据; 缺失值; 组合参数
课程来源: 视频讲座网
最后编审: 2020-12-15:chenxin
阅读次数: 58