潜在迪里克莱分配的在线学习Online Learning for Latent Dirichlet Allocation |
|
课程网址: | http://videolectures.net/nips2010_hoffman_oll/ |
主讲教师: | Matt Hoffman |
开课单位: | Adobe公司 |
开课时间: | 2011-03-25 |
课程语种: | 英语 |
中文简介: | 我们开发了一种用于潜在Dirichlet分配(LDA)的在线变分贝叶斯(VB)算法。在线LDA基于具有自然梯度步骤的在线随机优化,我们将其展示收敛到VB目标函数的局部最优值。它可以轻松分析海量文档集,包括那些到达流中的文档集。我们以多种方式研究在线LDA的表现,包括通过一次通过将100个主题主题模型拟合到维基百科的3.3M文章。我们证明在线LDA发现主题模型与批量VB中的主题模型一样好或更好,而且只有一小部分时间。 |
课程简介: | We develop an online variational Bayes (VB) algorithm for Latent Dirichlet Allocation (LDA). Online LDA is based on online stochastic optimization with a natural gradient step, which we show converges to a local optimum of the VB objective function. It can handily analyze massive document collections, including those arriving in a stream. We study the performance of online LDA in several ways, including by fitting a 100-topic topic model to 3.3M articles from Wikipedia in a single pass. We demonstrate that online LDA finds topic models as good or better than those found with batch VB, and in a fraction of the time. |
关 键 词: | 贝叶斯算法; 随机优化; 局部最优值 |
课程来源: | 视频讲座网 |
最后编审: | 2020-06-29:cxin |
阅读次数: | 98 |