0


基于视觉的控制、基于控制的视觉以及将它们联系起来的信息结

Vision-Based Control, Control-Based Vision, and the Information Knot That Ties Them
课程网址: http://videolectures.net/nips2010_soatto_vbc/  
主讲教师: Stefano Soatto
开课单位: 加利福尼亚大学
开课时间: 2011-01-12
课程语种: 英语
中文简介:
本教程的目的是探索感知和控制之间的相互作用,突出显示与之相关的“信息结”,并设计推理和学习算法,以便根据最佳设计,决策和数据计算“表示”。控制任务。我们将重点关注视觉传感,但所开发的分析延伸到其他模式。我们将首先回顾从经济理论到感知心理学在不同领域提出的各种信息概念,并使其适应决策和控制任务,而不是传输和存储。数据的。我们将看到,对于复杂的传感现象,如视觉,讨厌的因素起着重要的作用,特别是那些不是“可逆的”,如视线遮挡和量化尺度。对滋扰的处理提出了“代表性”的概念,其复杂性衡量数据中包含的“可操作信息”的数量。我们将讨论如何构建最佳设计表示,从保留所有和仅保留对任务起重要的统计数据的意义上。对于“可逆”的麻烦,这种表示可以是无损的(不是在传统的失真意义上,而是在决策或控制任务中的最佳性能)。在某些情况下,这些表示在精简集上得到支持,这可以帮助阐明“信号到符号障碍”问题,并且涉及基于拓扑的“稀疏性”概念。然而,不可逆的滋扰破坏了这种情况,需要引入关于不可逆的滋扰的表述的“稳定性”概念。这不是来自控制理论的(有界输入有界输出)稳定性的经典概念,而是涉及来自灾难理论的“结构稳定性”。最大稳定统计的设计提出了数据“适当采样”的概念。然而,这不是Nyquist正确采样的传统概念,而是与持久拓扑相关的概念。一旦构建了最优表示,就可以导出风险或控制功能的界限,类似于通信中的失真。折衷这个错误的“货币”(相当于通信中的比特率)不是数据量,而是传感过程中的“控制权限”。因此,传感和控制密切相关:可操作的信息驱动控制过程,感知过程的控制是允许计算表示的。我们将提出案例研究,其中制定视觉决策问题(例如检测,定位,识别,分类)在基于视觉的控制的背景下,导致改进的性能和减少的计算负担。它们包括已建立的低级视觉工具(例如跟踪,局部不变描述符),机器人探索以及动作和活动识别。我们将详细介绍其中的一些内容,并在研讨会上分发源代码以及课程说明。
课程简介: The purpose of this tutorial is to explore the interplay between sensing and control, to highlight the "information knot" that ties them, and to design inference and learning algorithms to compute "representations" from data that are optimal, by design, for decision and control tasks. We will focus on visual sensing, but the analysis developed extends to other modalities. We will first review various notions of information proposed in different fields from economic theory to perception psychology, and adapt them to decision and control tasks, as opposed to transmission and storage of data. We will see that for complex sensing phenomena, such as vision, nuisance factors play an important role, especially those that are not "invertible" such as occlusions of line-of-sight and quantization-scale. Handling of the nuisances brings forward a notion of "representation," whose complexity measures the amount of "actionable information" contained in the data. We will discuss how to build representations that are optimal by design, in the sense of retaining all and only the statistics that matter to the task. For "invertible" nuisances, such representations can be made lossless (not in the classical sense of distortion, but in the sense of optimal performance in a decision or control task). In some cases, these representations are supported on a thin-set, which can help elucidate the "signal-to-symbol barrier" problem, and relate to a topology-based notion of "sparsity". However, non-invertible nuisances spoil the picture, requiring the introduction of a notion of "stability" of the representation with respect to non-invertible nuisances. This is not the classical notion of (bounded-input-bounded-output) stability from control theory, but instead relates to "structural stability" from catastrophe theory. The design of maximally stable statistics brings forward a notion of "proper sampling" of the data. However, this is not the traditional notion of proper sampling from Nyquist, but one related to persistent topology. Once an optimal representation is constructed, a bound on the risk or control functional can be derived, analog to distortion in communications. The "currency" that trades off this error (the equivalent of the bit-rate in communication) is not the amount of data, but instead the "control authority" over the sensing process. Thus, sensing and control are intimately tied: Actionable information drives the control process, and control of the sensing process is what allows computing a representation. We will present case studies in which formulating visual decision problems (e.g. detection, localization, recognition, categorization) in the context of vision-based control leads to improved performance and reduced computational burden. They include established low-level vision tools (e.g. tracking, local invariant descriptors), robotic exploration, and action and activity recognition. We will describe some of these in detail and distribute source code at the workshop, together with course notes.
关 键 词: 算法; 控制任务; 视觉传感
课程来源: 视频讲座网
最后编审: 2019-07-26:cwx
阅读次数: 36