0


随机大图中高斯过程回归的精确学习曲线

Exact learning curves for Gaussian process regression on large random graphs
课程网址: http://videolectures.net/nips2010_urry_elc/  
主讲教师: Matthew Urry
开课单位: 伦敦国王学院
开课时间: 2011-03-25
课程语种: 英语
中文简介:
我们研究高斯过程回归的学习曲线,其根据给定大小的数据集上的平均贝叶斯误差来表征性能。虽然学习曲线通常很难计算,但我们表明,对于离散输入域,输入点之间的相似性用图表表征,可以获得准确的预测。实际上,对于从具有任意度分布的各种随机图集合中绘制的大图,这些应该是精确的,其中每个输入(节点)仅连接到有限数量的其他输入(节点)。该方法基于将适当的置信传播方程转换为图集合。我们证明了Poisson(Erdos Renyi)和常规随机图的预测的准确性,并讨论了学习曲线的先前近似何时以及为何失败。
课程简介: We study learning curves for Gaussian process regression which characterise performance in terms of the Bayes error averaged over datasets of a given size. Whilst learning curves are in general very difficult to calculate we show that for discrete input domains, where similarity between input points is characterised in terms of a graph, accurate predictions can be obtained. These should in fact become exact for large graphs drawn from a broad range of random graph ensembles with arbitrary degree distributions where each input (node) is connected only to a finite number of others. The method is based on translating the appropriate belief propagation equations to the graph ensemble. We demonstrate the accuracy of the predictions for Poisson (Erdos-Renyi) and regular random graphs, and discuss when and why previous approximations to the learning curve fail.
关 键 词: 高斯过程; 贝叶斯误差; 曲线
课程来源: 视频讲座网
最后编审: 2020-01-16:chenxin
阅读次数: 92