0


最优贝叶斯推荐集与短视最优选择查询集

Optimal Bayesian Recommendation Sets and Myopically Optimal Choice Query Sets
课程网址: http://videolectures.net/nips2010_viappiani_obr/  
主讲教师: Paolo Viappiani
开课单位: 奥尔堡大学
开课时间: 2011-03-25
课程语种: 英语
中文简介:
实用启发的贝叶斯方法通常采用(近视)信息的预期值(EVOI)作为选择查询的自然标准。然而,EVOI优化通常在计算上是禁止的。在本文中,我们使用选择查询来检查EVOI优化,在查询中,要求用户从集合中选择她最喜欢的产品。我们表明,在非常一般的假设下,最优选择查询w.r.t. \ EVOI与最佳推荐集合一致,即,最大化用户选择的期望效用的集合。由于推荐集优化是一个更简单的子模块问题,因此可以大大降低最优选择查询的精确和近似(贪婪)计算的复杂性。我们还研究了用户对选择查询的响应容易出错(使用常量和跟随混合多项logit噪声模型)并提供最坏情况保证的情况。最后,我们提出了一种适用于大结果空间的局部搜索技术。
课程简介: Bayesian approaches to utility elicitation typically adopt (myopic) expected value of information (EVOI) as a natural criterion for selecting queries. However, EVOI-optimization is usually computationally prohibitive. In this paper, we examine EVOI optimization using choice queries, queries in which a user is asked to select her most preferred product from a set. We show that, under very general assumptions, the optimal choice query w.r.t.\ EVOI coincides with optimal recommendation set, that is, a set maximizing expected utility of the user selection. Since recommendation set optimization is a simpler, submodular problem, this can greatly reduce the complexity of both exact and approximate (greedy) computation of optimal choice queries. We also examine the case where user responses to choice queries are error-prone (using both constant and follow mixed multinomial logit noise models) and provide worst-case guarantees. Finally we present a local search technique that works well with large outcome spaces.
关 键 词: 贝叶斯方法; 选择查询; 推荐集优化
课程来源: 视频讲座网
最后编审: 2019-07-26:cwx
阅读次数: 31