0


在尖峰神经网络中使用隐藏单元进行序列学习

Sequence learning with hidden units in spiking neural networks
课程网址: http://videolectures.net/nips2011_brea_neural/  
主讲教师: Johanni Brea
开课单位: 伯尔尼大学
开课时间: 2012-09-06
课程语种: 英语
中文简介:
我们考虑一个统计框架,其中尖峰神经元的复发网络学会产生时空尖峰模式。鉴于生物学上真实的随机神经元动力学,我们得出一个易处理的学习规则,用于隐藏和可见神经元的突触权重,导致训练序列的最佳回忆。我们表明,学习隐藏神经元的突触权重可以显着提高网络的存储容量。此外,我们推导出一个近似的在线学习规则,并表明我们的学习规则与Spike Timing Dependent Plasticity一致,因为如果突触前峰值在postynaptic峰值之前不久,则会诱发增强,否则会引发抑郁。
课程简介: We consider a statistical framework in which recurrent networks of spiking neurons learn to generate spatio-temporal spike patterns. Given biologically realistic stochastic neuronal dynamics we derive a tractable learning rule for the synaptic weights towards hidden and visible neurons that leads to optimal recall of the training sequences. We show that learning synaptic weights towards hidden neurons significantly improves the storing capacity of the network. Furthermore, we derive an approximate online learning rule and show that our learning rule is consistent with Spike-Timing Dependent Plasticity in that if a presynaptic spike shortly precedes a postynaptic spike, potentiation is induced and otherwise depression is elicited.
关 键 词: 统计框架; 尖峰神经元; 生物学
课程来源: 视频讲座网
最后编审: 2019-09-06:lxf
阅读次数: 79