0


神经群体中的跳跃经验模型

Empirical models of spiking in neural populations
课程网址: http://videolectures.net/nips2011_buesing_neural/  
主讲教师: Lars Buesing
开课单位: 伦敦大学学院
开课时间: 2012-01-25
课程语种: 英语
中文简介:
新皮质中的神经元编码并作为局部互联群体的一部分进行计算。大规模多电极记录使得可以通过将统计模型拟合到非平均数据来凭经验访问这些群体过程。什么统计结构最能描述本地网络中的并发尖峰?我们认为,在皮质中,射击在时间和空间上表现出广泛的相关性,并且典型的神经元样本仍然只反映当地人口的一小部分,最合适的模型通过低维潜在过程演变来捕捉共同的变异性。具有平滑的动力学,而不是假定的直接耦合。我们通过使用皮质记录将潜在动力学模型与实际尖峰观察结果与耦合的广义线性尖峰响应模型(GLM)进行比较来测试该声明。我们发现潜在动力学方法在拟合优度方面优于GLM,并且更准确地再现数据中的时间相关性。我们还比较了其观测模型来自高斯或点过程模型的模型,发现非高斯模型提供了稍好的拟合优度和更真实的种群尖峰数。
课程简介: Neurons in the neocortex code and compute as part of a locally interconnected population. Large-scale multi-electrode recording makes it possible to access these population processes empirically by fitting statistical models to unaveraged data. What statistical structure best describes the concurrent spiking of cells within a local network? We argue that in the cortex, where firing exhibits extensive correlations in both time and space and where a typical sample of neurons still reflects only a very small fraction of the local population, the most appropriate model captures shared variability by a low-dimensional latent process evolving with smooth dynamics, rather than by putative direct coupling. We test this claim by comparing a latent dynamical model with realistic spiking observations to coupled generalised linear spike-response models (GLMs) using cortical recordings. We find that the latent dynamical approach outperforms the GLM in terms of goodness-of-fit, and reproduces the temporal correlations in the data more accurately. We also compare models whose observations models are either derived from a Gaussian or point-process models, finding that the non-Gaussian model provides slightly better goodness-of-fit and more realistic population spike counts.
关 键 词: 神经元编码; 互联群体; 统计结构
课程来源: 视频讲座网
最后编审: 2021-02-04:nkq
阅读次数: 49