0


大神经群中的信息率与最优译码

Information Rates and Optimal Decoding in Large Neural Populations
课程网址: http://videolectures.net/nips2011_pfau_decoding/  
主讲教师: David Pfau
开课单位: 哥伦比亚大学
开课时间: 2012-09-06
课程语种: 英语
中文简介:
理论神经科学中的许多基本问题涉及最佳解码和尖峰神经元群体中香农信息率的计算。在本文中,我们应用统计推断的渐近理论中的方法来获得对这些量的更清晰的分析理解。我们发现,对于携带有限总信息量的大型神经群体,完全尖峰群体响应与高斯过程的单个观察一样渐近地提供信息,其均值和协方差可以根据网络和单个神经元属性明确表征。该渐近充分统计量的高斯形式允许我们在某些情况下通过简单的线性变换执行最优贝叶斯解码,并获得由网络承载的香农信息的闭合形式表达式。该理论的一个技术优势是它甚至可以容易地应用于非泊松点过程网络模型;例如,我们发现在某些条件下,具有强烈历史依赖性(非泊松)效应的神经群体携带与具有匹配激发率的非相互作用泊松神经元的更简单等效群体完全相同的信息。我们认为,我们的研究结果有助于澄清最近关于神经解码和神经假体设计的文献的一些结果。
课程简介: Many fundamental questions in theoretical neuroscience involve optimal decoding and the computation of Shannon information rates in populations of spiking neurons. In this paper, we apply methods from the asymptotic theory of statistical inference to obtain a clearer analytical understanding of these quantities. We find that for large neural populations carrying a finite total amount of information, the full spiking population response is asymptotically as informative as a single observation from a Gaussian process whose mean and covariance can be characterized explicitly in terms of network and single neuron properties. The Gaussian form of this asymptotic sufficient statistic allows us in certain cases to perform optimal Bayesian decoding by simple linear transformations, and to obtain closed-form expressions of the Shannon information carried by the network. One technical advantage of the theory is that it may be applied easily even to non-Poisson point process network models; for example, we find that under some conditions, neural populations with strong history-dependent (non-Poisson) effects carry exactly the same information as do simpler equivalent populations of non-interacting Poisson neurons with matched firing rates. We argue that our findings help to clarify some results from the recent literature on neural decoding and neuroprosthetic design.
关 键 词: 神经科学; 最佳解码; 尖峰神经元群体
课程来源: 视频讲座网
最后编审: 2019-07-26:cwx
阅读次数: 47