利用稀疏复合线性判别分析从多模态神经成像数据中识别阿尔茨海默病相关脑区Identifying Alzheimer's Disease-Related Brain Regions from Multi-Modality Neuroimaging Data using Sparse Composite Linear Discrimination Analysis |
|
课程网址: | http://videolectures.net/nips2011_ye_alzheimers/ |
主讲教师: | Jieping Ye |
开课单位: | 密歇根大学 |
开课时间: | 2012-09-06 |
课程语种: | 英语 |
中文简介: | 在疾病发展的早期阶段诊断阿尔茨海默病(AD)具有重要的临床意义。目前主要依赖认知测量的临床评估证明低敏感性和特异性。快速增长的神经影像技术具有很大的前景。迄今为止的研究主要集中在单一神经影像学方法上。然而,由于不同的方式为相同的疾病病理学提供补充措施,多模态数据的融合可以增加识别疾病相关脑区域的统计学效力。对于早期AD尤其如此,在该阶段,疾病相关区域最可能是仅从单一模态难以检测的弱效应区域。我们提出了一种稀疏复合线性判别分析模型(SCLDA),用于从多模态数据中识别早期AD的疾病相关脑区域。 SCLDA使用一种新颖的公式,将每个LDA参数分解为由所有模态共享的公共参数和每种模态特定的参数的乘积,从而能够联合分析所有模态和借用彼此的强度。我们证明了这个公式相当于非凸正则化的惩罚似然,它可以通过DC((凸函数的差异)编程来解决。我们表明在使用DC编程时,非凸正则化的性质就术语来说。可以很好地揭示保留弱效应特征。我们进行了大量的模拟,表明SCLDA在特征选择上优于现有的竞争算法,尤其是识别弱效应特征的能力。我们将SCLDA应用于磁共振成像(MRI)和正电子发射49例AD患者和67例正常对照(NC)的体层摄影(PET)图像。我们的研究确定与AD文献中的发现一致的疾病相关脑区域。 |
课程简介: | Diagnosis of Alzheimer's disease (AD) at the early stage of the disease development is of great clinical importance. Current clinical assessment that relies primarily on cognitive measures proves low sensitivity and specificity. The fast growing neuroimaging techniques hold great promise. Research so far has focused on single neuroimaging modalities. However, as different modalities provide complementary measures for the same disease pathology, fusion of multi-modality data may increase the statistical power in identification of disease-related brain regions. This is especially true for early AD, at which stage the disease-related regions are most likely to be weak-effect regions that are difficult to be detected from a single modality alone. We propose a sparse composite linear discriminant analysis model (SCLDA) for identification of disease-related brain regions of early AD from multi-modality data. SCLDA uses a novel formulation that decomposes each LDA parameter into a product of a common parameter shared by all the modalities and a parameter specific to each modality, which enables joint analysis of all the modalities and borrowing strength from one another. We prove that this formulation is equivalent to a penalized likelihood with non-convex regularization, which can be solved by the DC ((difference of convex functions) programming. We show that in using the DC programming, the property of the non-convex regularization in terms of preserving weak-effect features can be nicely revealed. We perform extensive simulations to show that SCLDA outperforms existing competing algorithms on feature selection, especially on the ability for identifying weak-effect features. We apply SCLDA to the Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) images of 49 AD patients and 67 normal controls (NC). Our study identifies disease-related brain regions consistent with findings in the AD literature. |
关 键 词: | 认知测量; 临床评估; 神经影像技术 |
课程来源: | 视频讲座网 |
最后编审: | 2019-09-06:lxf |
阅读次数: | 113 |