0


线性动力学的谱学从广义线性观测到应用于神经种群数据

Spectral learning of linear dynamics from generalisedlinear observations with application to neural population data
课程网址: http://videolectures.net/nips2012_buesing_spectral_learning/  
主讲教师: Lars Buesing
开课单位: 伦敦大学学院
开课时间: 2013-01-16
课程语种: 英语
中文简介:
具有广义线性观测模型的潜在线性动力系统在各种应用中出现,例如在对神经元群体的尖峰活动进行建模时。在这里,我们展示了如何利用高斯观测(通常在这种情况下通常称为子空间识别)的线性系统的频谱学习方法来估计通过非高斯噪声模型观察到的动态系统模型的参数。我们使用这种方法来获得神经种群数据的动态模型的参数估计,其中观察到的尖峰计数是泊松分布,其中对数由潜在的动态过程确定,可能由外部输入驱动。我们证明了扩展系统识别算法是一致的,并且准确地在大型模拟数据集上恢复正确的参数,其计算成本比近似期望最大化(EM)小得多,这是由于子空间识别的非迭代性。即使在较小的数据集上,它也可以为EM提供有效的初始化,从而实现更强大的性能和更快的收敛。这些益处显示可扩展到真实的神经数据。
课程简介: Latent linear dynamical systems with generalised-linear observation models arise in a variety of applications, for example when modelling the spiking activity of populations of neurons. Here, we show how spectral learning methods for linear systems with Gaussian observations (usually called subspace identification in this context) can be extended to estimate the parameters of dynamical system models observed through non-Gaussian noise models. We use this approach to obtain estimates of parameters for a dynamical model of neural population data, where the observed spike-counts are Poisson-distributed with logrates determined by the latent dynamical process, possibly driven by external inputs. We show that the extended system identification algorithm is consistent and accurately recovers the correct parameters on large simulated data sets with much smaller computational cost than approximate expectation-maximisation (EM) due to the non-iterative nature of subspace identification. Even on smaller data sets, it provides an effective initialization for EM, leading to more robust performance and faster convergence. These benefits are shown to extend to real neural data.
关 键 词: 广义线性观测模型; 神经元群体; 高斯观测
课程来源: 视频讲座网
最后编审: 2019-09-06:lxf
阅读次数: 53