0


TCA:非高斯数据的高维主成分分析

TCA: High Dimensional Principal Component Analysis for non-Gaussian Data
课程网址: http://videolectures.net/nips2012_han_component_analysis/  
主讲教师: Fang Han
开课单位: 约翰霍普金斯大学
开课时间: 2013-01-16
课程语种: 英语
中文简介:

我们提出了一种高维半参数尺度变量主成分分析,命名为TCA,利用椭圆分布族与主成分分析之间的自然联系。椭圆分布族包括许多众所周知的多变量分布,如多元t和逻辑,并且由Fang(2002)使用copula技术扩展到metaelliptical。在本文 中,我们将元椭圆分布族扩展到一个更大的族,称为transelliptical。我们证明了TCA可以在transelliptical分布族中获得接近最优的s(log d / n)^ {1/2}估计一致性率,即使分布非常重,有无限的二阶矩,没有密度和拥有任意连续的边际分布。还提供具有显式速率的特征选择结果。 TCA也在数值模拟和大规模库存数据中实施,以说明其经验性能。理论和实验都证实了TCA几乎可以免费获得模型灵活性,估计精度和鲁棒性。

课程简介: We propose a high dimensional semiparametric scaleinvariant principle component analysis, named TCA, by utilize the natural connection between the elliptical distribution family and the principal component analysis. Elliptical distribution family includes many well-known multivariate distributions like multivariate t and logistic and it is extended to the metaelliptical by Fang (2002) using the copula techniques. In this paper we extend the meta-elliptical distribution family to a even larger family, called transelliptical. We prove that TCA can obtain a near-optimal s(log d/n)^{1/2} estimation consistency rate in the transelliptical distribution family, even if the distributions are very heavy-tailed, have infinite second moments, do not have densities and possess arbitrarily continuous marginal distributions. A feature selection result with explicit rate is also provided. TCA is also implemented in both numerical simulations and large-scale stock data to illustrate its empirical performance. Both theories and experiments confirm that TCA can achieve model flexibility, estimation accuracy and robustness at almost no cost.
关 键 词: 椭圆分布族; 高维半参数尺度; 主成分分析
课程来源: 视频讲座网
最后编审: 2019-09-06:lxf
阅读次数: 115