0


高阶多任务特征学习识别阿尔茨海默病进展预测的纵向表型标记

High-Order Multi-Task Feature Learning to Identify Longitudinal Phenotypic Markers for Alzheimer Disease Progression Prediction
课程网址: http://videolectures.net/nips2012_wang_alzheimer_disease/  
主讲教师: Hua Wang
开课单位: 科罗拉多矿业学院
开课时间: 2013-01-16
课程语种: 英语
中文简介:
阿尔茨海默病(AD)是一种神经退行性疾病,其特征在于记忆和其他认知功能的进行性损伤。回归分析已被研究将神经影像学测量与认知状态联系起来。然而,这些测量是否具有进一步预测能力来推断认知表现随时间变化的轨迹仍然是AD研究中一个未被探索但重要的课题。我们提出了一种新的高阶多任务学习模型。解决这个问题。所提出的模型通过结构化稀疏诱导规范探索数据特征和回归任务中存在的时间相关性。此外,该模型的稀疏性使得能够选择少量的MRI测量值,同时保持高预测精度。使用ADNI队列的基线MRI和连续认知数据的实证研究已经产生了预后的结果。
课程简介: Alzheimer disease (AD) is a neurodegenerative disorder characterized by progressive impairment of memory and other cognitive functions. Regression analysis has been studied to relate neuroimaging measures to cognitive status. However, whether these measures have further predictive power to infer a trajectory of cognitive performance over time is still an under-explored but important topic in AD research. We propose a novel high-order multi-task learning model to address this issue. The proposed model explores the temporal correlations existing in data features and regression tasks by the structured sparsity-inducing norms. In addition, the sparsity of the model enables the selection of a small number of MRI measures while maintaining high prediction accuracy. The empirical studies, using the baseline MRI and serial cognitive data of the ADNI cohort, have yielded promising results.
关 键 词: 回归分析; 神经影像学; 认知表现
课程来源: 视频讲座网
最后编审: 2019-09-07:lxf
阅读次数: 102