0


转移学习没有免费午餐定理

No-Free-Lunch Theorems for Transfer Learning
课程网址: http://videolectures.net/nipsworkshops09_ben_david_nflt/  
主讲教师: Shai Ben-David
开课单位: 滑铁卢大学
开课时间: 2010-01-19
课程语种: 英语
中文简介:
我将提出一个正式的转移学习框架,并调查在哪些条件下可以为这种情况提供性能保证。我将讨论两个关键问题:* 1)对于在(不同的)源任务上训练的预测器,哪个任务相似性的概念足以为目标任务提供有意义的误差界限?* 2)我们能做的不仅仅是训练一个假设吗?关于源任务并分析其在目标任务上的表现?使用未标记的目标样本可以减少目标预测误差吗?
课程简介: I will present a formal framework for transfer learning and investigate under which conditions is it possible to provide performance guarantees for such scenarios. I will address two key issues: *1) Which notions of task-similarity suffice to provide meaningful error bounds on a target task, for a predictor trained on a (different) source task? *2) Can we do better than just train a hypothesis on the source task and analyze its performance on the target task? Can the use of unlabeled target samples reduce the target prediction error?
关 键 词: 转移学习; 目标预测; 预测器
课程来源: 视频讲座网
最后编审: 2019-09-07:lxf
阅读次数: 83