自主采矿钻机传感器的crf模型学习Learning CRF Models from Drill Rig Sensors for Autonomous Mining |
|
课程网址: | http://videolectures.net/nipsworkshops09_monteiro_lmdr/ |
主讲教师: | Sildomar T. Monteiro |
开课单位: | 悉尼大学 |
开课时间: | 2010-01-19 |
课程语种: | 英语 |
中文简介: | 本文研究了一种将集合方法与图形模型相结合的方法,用于分析矿山自动化环境中的多个传感器测量。用于钻井自动化的钻井传感器测量值有可能提供对正在钻探的岩石的地下地质特征的估计。 Boosting算法用作局部分类器,将钻探测量映射到相应的地质类别。然后,条件随机场将该局部信息与相邻测量结合使用以共同推断其类别。通过最大化伪似然从训练数据中学习模型参数。使用置信传播计算分类井眼剖面的概率分布。我们提出了应用该方法对来自澳大利亚铁矿石的半自动钻机收集的传感器数据分类岩石类型的实验结果。 |
课程简介: | This paper investigates an approach that combines ensemble methods with graphical models to analyse multiple sensor measurements in the context of mine automation. Drill sensor measurements used for drilling automation have the potential to provide an estimate of the subsurface geological properties of the rocks being drilled. A Boosting algorithm is used as a local classifier mapping drill measurements to corresponding geological categories. A Conditional Random Field then uses this local information in conjunction with neighbouring measurements to jointly reason about their categories. Model parameters are learned from training data by maximizing the pseudo-likelihood. The probability distribution of classified borehole sections is calculated using belief propagation. We present experimental results of applying the method to classify rock types from sensor data collected from a semi-autonomous drill rig at an iron ore mine in Australia. |
关 键 词: | 集合方法; 图形模型; 条件随机场 |
课程来源: | 视频讲座网 |
最后编审: | 2019-09-07:lxf |
阅读次数: | 59 |