0


基于多特征表示或内核的监督和局部降维

Supervised and Localized Dimensionality Reduction from Multiple Feature Representations or Kernels
课程网址: http://videolectures.net/nipsworkshops2010_alpaydin_sld/  
主讲教师: Ethem Alpaydin
开课单位: 博阿齐奇大学
开课时间: 2011-01-12
课程语种: 英语
中文简介:
我们提出了一种监督和局部降维方法,它结合了多个特征表示或内核。每个特征表示orkernel用于适合通过监督管理器中的参数选通模型进行有效降维和分类的情况,并且为每个特征表示或内核学习局部投影矩阵。使用由内核机器训练和梯度下降更新组成的交替优化程序来优化核机械参数,局部投影矩阵和门控模型参数。基准数据集的实证结果在分类准确性,解决方案的平滑性和易于可视化方面验证了该方法。
课程简介: We propose a supervised and localized dimensionality reduction method that combines multiple feature representations or kernels. Each feature representation or kernel is used where it is suitable through a parametric gating model in a supervised manner for efficient dimensionality reduction and classification, and local projection matrices are learned for each feature representation or kernel. The kernel machine parameters, the local projection matrices, and the gating model parameters are optimized using an alternating optimization procedure composed of kernel machine training and gradient-descent updates. Empirical results on benchmark data sets validate the method in terms of classification accuracy, smoothness of the solution, and ease of visualization.
关 键 词: 局部降维; 内核; 局部投影矩阵
课程来源: 视频讲座网
最后编审: 2019-09-07:lxf
阅读次数: 41