带标签成本的能量最小化及其在多模型拟合中的应用Energy Minimization with Label costs and Applications in Multi-Model Fitting |
|
课程网址: | http://videolectures.net/nipsworkshops2010_boykov_eml/ |
主讲教师: | Yuri Boykov |
开课单位: | 加拿大西安大略大学 |
开课时间: | 2011-01-13 |
课程语种: | 英语 |
中文简介: | 由于其通用性,有效性和速度,扩展算法对计算机视觉产生了重大影响。最近,它只能最小化涉及一元,成对和专用高阶项的能量。我们建议扩展一个扩展,可以同时优化''标签成本''与某些最优保证。带有标签成本的能量可以基于其中出现的标签集来惩罚解决方案。最简单的特殊情况是惩罚解决方案中的标签数量,但建议的能量明显比这更普遍。标签成本的有用性通过去年出现的视觉中的许多特定应用(例如,在物体识别中)来证明。我们的工作(参见CVPR 2010,IJCV提交)从一般角度研究标签成本,包括多算法,最优边界,扩展和快速特殊情况(例如UFL启发式)的讨论。在本次演讲中,我们关注标签成本的自然生成应用是多模型拟合,并展示了几个例子:单应性检测,运动分割,无监督图像分割,压缩和FMM。我们还讨论了一种方法(PEARL),用于有效探索标签的连续性。模型拟合中扩展的重要实际障碍。我们讨论为什么我们基于优化的多模型拟合方法比目前在视觉中占主导地位的RANSAC(例如顺序RANSAC)的标准扩展更加强大。 |
课程简介: | The a-expansion algorithm has had a significant impact in computer vision due to its generality, effectiveness, and speed. Until recently, it could only minimize energies that involve unary, pairwise, and specialized higher-order terms. We propose an extension of a-expansion that can simultaneously optimize ‘‘label costs’’ with certain optimality guarantees. An energy with label costs can penalize a solution based on the set of labels that appear in it. The simplest special case is to penalize the number of labels in the solution, but the proposed energy is significantly more general than this. Usefulness of label costs is demonstrated by a number of specific applications in vision (e.g. in object recognition) that appeared in the last year. Our work (see CVPR 2010, IJCV submission) studies label costs from a general perspective, including discussion of multiple algorithms, optimality bounds, extensions, and fast special cases (e.g. UFL heuristics). In this talk we focus on natural generic applications of label costs is multi-model fitting and demonstrate several examples: homography detection, motion segmentation, unsupervised image segmentation, compression, and FMM. We also discuss a method (PEARL) for effective exploration of the continuum of labels -an important practical obstacle for a-expansion in model fitting. We discuss why our optimizationbased approach to multi-model fitting is significantly more robust than standard extensions of RANSAC (e.g. sequential RANSAC) currently dominant in vision. |
关 键 词: | 扩展算法; 计算机视觉; 标签成本 |
课程来源: | 视频讲座网 |
最后编审: | 2019-09-07:lxf |
阅读次数: | 38 |