0


信息论模型的近似优化验证

Information Theoretic Model Validation by Approximate Optimization
课程网址: http://videolectures.net/nipsworkshops2010_buhmann_itm/  
主讲教师: Joachim M. Buhmann
开课单位: 苏黎世理工学院
开课时间: 2011-01-05
课程语种: 英语
中文简介:
模式识别中的模型选择需要(i)为数据解释指定合适的成本函数,以及(ii)根据数据中的噪声水平控制自由度。我们提倡信息理论视角,其中测量中的不确定性量化了潜在优化问题的解决方案空间,从而自适应地使成本函数正规化。模式识别模型可以容忍比其他模型更高水平的测量波动,如果解决方案同样具有信息性,则认为模式识别模型是优越的。 “信息性”和“稳健性”之间的最佳权衡是通过所选成本函数的近似容量来量化的。该模型选择概念的经验证据是通过计算机安全性中的聚类验证,即基于角色的访问控制的布尔数据的多标签聚集,以及高维高斯混合模型和微阵列数据的分析来提供的。此外,SVD成本函数的近似容量表明SVD谱的截止值。
课程简介: Model selection in pattern recognition requires (i) to specify a suitable cost function for the data interpretation and (ii) to control the degrees of freedom depending on the noise level in the data. We advocate an information theoretic perspective where the uncertainty in the measurements quantizes the solution space of the underlying optimization problem, thereby adaptively regularizing the cost function. A pattern recognition model, which can tolerate a higher level of fluctuations in the measurements than alternative models, is considered to be superior provided that the solution is equally informative. The optimal tradeoff between ‘‘informativeness’’ and ‘‘robustness’’ is quantified by the approximation capacity of the selected cost function. Empirical evidence for this model selection concept is provided by cluster validation in computer security, i.e., multilabel clustering of Boolean data for role based access control, but also in high dimensional Gaussian mixture models and the analysis of microarray data. Furthermore, the approximation capacity of the SVD cost function suggests a cutoff value for the SVD spectrum.
关 键 词: 模式识别; 成本函数; 高维高斯混合模型
课程来源: 视频讲座网
最后编审: 2019-09-07:lxf
阅读次数: 42