MAP推理的增广对偶分解Augmenting Dual Decomposition for MAP Inference |
|
课程网址: | http://videolectures.net/nipsworkshops2010_martins_add/ |
主讲教师: | André F. T. Martins |
开课单位: | 卡内基梅隆大学 |
开课时间: | 2011-01-13 |
课程语种: | 英语 |
中文简介: | 在本文中,我们提出将增广拉格朗日优化与双重分解方法相结合,以获得因子图上的近似MAP(最大后验)推断的快速算法。我们还展示了所提出的算法如何有效地处理(可能是全局的)结构约束的问题。实验结果报告证明了所提方法的最新技术性能。 |
课程简介: | In this paper, we propose combining augmented Lagrangian optimization with the dual decomposition method to obtain a fast algorithm for approximate MAP (maximum a posteriori) inference on factor graphs. We also show how the proposed algorithm can efficiently handle problems with (possibly global) structural constraints. The experimental results reported testify for the state-of-the-art performance of the proposed approach. |
关 键 词: | 拉格朗日优化; 双重分解; 因子图 |
课程来源: | 视频讲座网 |
最后编审: | 2019-09-07:lxf |
阅读次数: | 64 |