0


多任务多核学习(MTMKL)

Multitask Multiple Kernel Learning (MT-MKL)
课程网址: http://videolectures.net/nipsworkshops2010_widmer_mmk/  
主讲教师: Christian Widmer
开课单位: 图宾根大学
开课时间: 2011-01-12
课程语种: 英语
中文简介:
缺乏足够的训练数据是计算生物学中许多机器学习应用的限制因素。如果数据可用于几个不同但相关的问题域,则可以使用多任务学习算法基于所有可用信息来学习模型。然而,结合来自若干任务的信息需要仔细考虑任务之间的相似程度。我们建议使用最近发布的q Norm多核学习算法,通过将多任务学习问题公式化为多核学习,同时学习或改进与多任务学习分类器相关的相似性矩阵。我们在计算生物学的两个问题上展示了我们方法的表现。首先,我们证明了我们的方法可以通过改进任务关系来提高具有给定层次结构任务结构的拼接站点数据集的性能。其次,我们考虑一个MHC I数据集,为此我们假设有关任务相关程度的知识。在这里,我们能够从头开始学习任务相似性。我们的框架非常通用,因为它允许包含关于任务关系的先验知识(如果可用),但也能够在缺少此类先验信息的情况下识别任务相似性。这两种变体都有可能在计算生物学的应用中取得成果。
课程简介: The lack of sufficient training data is the limiting factor for many Machine Learning applications in Computational Biology. If data is available for several different but related problem domains, Multitask Learning algorithms can be used to learn a model based on all available information. However, combining information from several tasks requires careful consideration of the degree of similarity between tasks. We propse to use the recently published q-Norm Multiple Kernel Learning algorithm to simultaneously learn or refine the similarity matrix between tasks along with the Multitask Learning classifier by formulating the Multitask Learning problem as Multiple Kernel Learning. We demonstrate the performance of our method on two problems from Computational Biology. First, we show that our method is able to improve performance on a splice site dataset with given hierarchical task structure by refining the task relationships. Second, we consider an MHC-I dataset, for which we assume no knowledge about the degree of task relatedness. Here, we are able to learn the task similarity ab initio. Our framework is very general as it allows to incorporate prior knowledge about tasks relationships if available, but is also able to identify task similarities in absence of such prior information. Both variants show promising results in applications from Computational Biology.
关 键 词: 计算生物学; 机器学习; 多任务学习算法
课程来源: 视频讲座网
最后编审: 2019-09-07:lxf
阅读次数: 82