基于宽带多滤波多历元数据集的类星体分类与表征Quasar classification and characterization from broadband multi-filter, multi-epoch data sets |
|
课程网址: | http://videolectures.net/nipsworkshops2011_bovy_classification/ |
主讲教师: | Jo Bovy |
开课单位: | 普林斯顿大学 |
开课时间: | 2012-01-23 |
课程语种: | 英语 |
中文简介: | 类星体 - 主动吸积超大质量黑洞 - 是宇宙中最明亮的物体之一。类星体的大样本可用于研究主题,包括膨胀宇宙学,宇宙历史过程中黑洞增长的演变,以及天体物理黑洞增生的物理学。未来peta量表调查的主要挑战之一是对类星体的距离进行分类和估算,而无需进行昂贵的光谱跟踪。我将介绍目前使用的技术来对宽带测光中的类星体进行分类,重点关注XDQSO方法 - 一种使用极端反卷积密度估计技术处理缺失和高度不确定数据的概率方法 - 以及对当前使用的其他机器学习方法的批判性评估。展望未来的主要挑战将是:(1)将变异性和天体测量数据纳入当前使用的颜色选择中以进行最佳的类星体选择,(2)将星座中的类星体(与星星相对)分开,当我们变得更微弱时,(3) )在数据驱动的非参数方法之间取得平衡 - 这对于明亮的类星体和基于模板的技术非常有效 - 这对于微弱的类星体来说是必要的,其中观察到的通量的宿主星系污染是显着的。 |
课程简介: | Quasars—actively accreting supermassive black holes—are among the most luminous objects in the Universe. Large samples of quasars can be used to study topics including inflationary cosmology, the evolution of black hole growth over the course of cosmic history, and the physics of astrophysical black hole accretion. One of the major challenges for the peta-scale surveys of the future is to classify and estimate the distances to quasars without the need for expensive spectroscopic follow-up. I will present currently used techniques to classify quasars from broadband photometry, focusing on the XDQSO method—a probabilistic method that uses the extreme-deconvolution density estimation technique to handle missing and highly uncertain data—and a critical appraisal of other machine learning methods currently used. Going forward the major challenges will be to (1) incorporate variability and astrometric data into the currently used color selection for optimal quasar selection, (2) separate quasars from galaxies (as opposed to stars) as we go to fainter magnitudes, and (3) strike a balance between data-driven, non-parametric methods—which work well for bright quasars—and template-based techniques—necessary for faint quasars where host-galaxy contamination of the observed flux is significant. |
关 键 词: | 类星体; 反卷积密度估计; 概率 |
课程来源: | 视频讲座网 |
最后编审: | 2019-09-07:lxf |
阅读次数: | 38 |