首页 → 计算机应用
首页 → 计算机工程
首页 → 应用数学
首页 → 计算机工程
首页 → 应用数学
计算摄影的有效回归:从色彩管理到全方位超分辨率Efficient Regression for Computational Photography: from Color Management to Omnidirectional Superresolution |
|
| 课程网址: | http://videolectures.net/nipsworkshops2011_gupta_omnidirectional/ |
| 主讲教师: | Maya Gupta |
| 开课单位: | 华盛顿大学 |
| 开课时间: | 2012-01-23 |
| 课程语种: | 英语 |
| 中文简介: | 许多计算摄影应用可以被构造为低维回归问题,其需要快速评估测试样本以进行渲染。在这种情况下,将样本存储在可以快速插值的网格或网格上通常是一种实用的方法。我们展示了如何在给定非晶格数据点的情况下最优地求解这种晶格。得到的晶格回归快速而准确。我们展示了它对两种应用的有用性:色彩管理和全方位图像的超分辨率。 |
| 课程简介: | Many computational photography applications can be framed as low-dimensional regression problems that require fast evaluation of test samples for rendering. In such cases, storing samples on a grid or lattice that can be quickly interpolated is often a practical approach. We show how to optimally solve for such a lattice given non-lattice data points. The resulting lattice regression is fast and accurate. We demonstrate its usefulness for two applications: color management, and superresolution of omnidirectional images. |
| 关 键 词: | 低维回归; 非晶格数据点; 样本 |
| 课程来源: | 视频讲座网 |
| 最后编审: | 2019-09-07:lxf |
| 阅读次数: | 65 |
