0


复杂医学数据抽取主题模型的前景:对病人及其药物的研究

On the Promise of Topic Models for Abstracting Complex Medical Data: A Study of Patients and their Medications
课程网址: http://videolectures.net/nipsworkshops2011_wiens_medications/  
主讲教师: Jenna Wiens
开课单位: 麻省理工学院
开课时间: 2012-01-23
课程语种: 英语
中文简介:
确定患者之间的相似性是临床实践和医学研究的组成部分。原则上,详细的电子医疗记录的扩散应该通过使得找到有用的患者群体成为可能来促进个性化医疗的发展。然而,现代医学记录的高维度使得寻找有用的群组成为挑战。构建有用的抽象需要专家知识。我们探索使用主题模型来自动发现这样的抽象。我们测试了从数千种药物列表中推断有用抽象的任务方法。我们研究了两种不同的生成相关主题模型的方法,一种是利用Web内容,另一种是直接来自电子病历。应用于25,000名患者就诊的语料库,我们评估这些主题模型在计算相对患者相似性方面的潜在效用,以及预测下次入院时的不良结果,例如死亡或异常长期停留。我们发现使用学习的抽象构建的分类器优于使用专家设计的药物分类方案分类的分类器,该方案目前被用作行业标准。
课程简介: Identifying similarities among patients is an integral part of both clinical practice and medical research. In principle, the proliferation of detailed electronic medical records should facilitate the growth of personalized medicine by making it possible to find useful cohorts of patients. However, the high dimensionality of modern medical records makes finding useful cohorts a challenge. Expert knowledge is often required to construct useful abstractions. We explore the use of topic models to discover such abstractions automatically. We test the proposed methods on the task of inferring useful abstractions from a list of thousands of medications. We investigate two different ways of generating relevant topic models, one leveraging Web content and another directly from electronic patient records. Applied to a corpus of 25,000 patient visits, we evaluate the potential utility of these topic models for computing relative patient similarity, and for predicting adverse outcomes at the next hospital admission, such as death or an abnormally long stay. We found that the classifiers built using the learned abstractions outperformed classifiers learned using an expert-devised drug classification scheme that is employed currently as an industry standard.
关 键 词: 临床实践; 患者; 医疗
课程来源: 视频讲座网
最后编审: 2019-09-08:lxf
阅读次数: 47