微分方程模型不确定性量化的概率积分法Probabilistic Integration for Uncertainty Quantification in Differential Equation Models |
|
课程网址: | http://videolectures.net/nipsworkshops2012_calderhead_equation_mo... |
主讲教师: | Ben Calderhead |
开课单位: | 伦敦大学学院 |
开课时间: | 2013-01-15 |
课程语种: | 英语 |
中文简介: | 在这次演讲中,我讨论了最近与Oksana Chkrebtii,DaveCampbell教授和Mark Girolami教授的联合工作,我们在其中开发了用于求解微分方程组的概率形式。这使得现有数值解算器的类具有通用性,同时使模型化假设明确。所讨论的方法在可能解的函数空间上产生概率分布,而不是在给定误差容限内近似满足模型动态的单一确定性解。将解决方案估计视为一个推论问题(O'Hagan,1992; Skilling,1991)允许我们使用贝叶斯函数估计工具量化误差。特别地,我们在底层函数空间上使用高斯过程先验,同时通过模型状态及其衍生物通过其核积分变换结合规则性假设。 |
课程简介: | In this talk I discuss recent joint work with Oksana Chkrebtii, Prof. Dave Campbell and Prof. Mark Girolami, in which we develop a probabilistic formalism for solving systems of differential equations. This generalises classes of existing numerical solvers while making the modelling assumptions explicit. The approach discussed yields a probability distribution on a function space of possible solutions, instead of a single deterministic solution that approximately satisfies model dynamics to within a given error tolerance. Viewing solution estimation as an inference problem (O'Hagan, 1992; Skilling, 1991) allows us to quantify solver error using the tools of Bayesian function estimation. In particular, we make use of Gaussian process priors on an underlying function space, while incorporating regularity assumptions by modelling states and their derivatives by their kernel integral transforms. |
关 键 词: | 微分方程组; 概率; 函数空间 |
课程来源: | 视频讲座网 |
最后编审: | 2019-09-08:lxf |
阅读次数: | 73 |