0


基于凸松弛的计算与统计推算

Computational and Statistical Tradeoffs via Convex Relaxation
课程网址: http://videolectures.net/nipsworkshops2012_chandrasekaran_convex_...  
主讲教师: Venkat Chandrasekaran
开课单位: 加州理工学院
开课时间: 2013-01-16
课程语种: 英语
中文简介:
在现代数据分析中,人们常常面临涉及大量数据集的统计推断问题。处理这样大的数据集通常被视为重大的计算挑战。但是,如果数据是统计人员的主要资源,则应将对更多数据的访问视为资产而非负担。我们描述了一种基于凸松弛的计算框架,以便在可以访问越来越大的数据集时降低推理过程的计算复杂度。凸松弛技术已被广泛用于理论计算机科学,因为它们为许多计算上难以处理的任务提供易处理的近似算法。我们证明了这种方法在统计估计中的有效性,可以在一类去噪问题中提供具体的时间数据权衡。因此,凸松弛提供了一种原理方法,可以利用较大数据集的统计增益来减少推理算法的运行时间。 (与迈克尔乔丹合作)
课程简介: In modern data analysis, one is frequently faced with statistical inference problems involving massive datasets. Processing such large datasets is usually viewed as a substantial computational challenge. However, if data are a statistician's main resource then access to more data should be viewed as an asset rather than as a burden. We describe a computational framework based on convex relaxation to reduce the computational complexity of an inference procedure when one has access to increasingly larger datasets. Convex relaxation techniques have been widely used in theoretical computer science as they give tractable approximation algorithms to many computationally intractable tasks. We demonstrate the efficacy of this methodology in statistical estimation in providing concrete time-data tradeoffs in a class of denoising problems. Thus, convex relaxation offers a principled approach to exploit the statistical gains from larger datasets to reduce the runtime of inference algorithms. (Joint work with Michael Jordan)
关 键 词: 数据集; 统计推断; 凸松弛技术
课程来源: 视频讲座网
最后编审: 2019-09-08:lxf
阅读次数: 74