子模性与离散凸性Submodularity and Discrete Convexity |
|
课程网址: | http://videolectures.net/nipsworkshops2012_fujishige_submodularit... |
主讲教师: | Satoru Fujishige |
开课单位: | 京都大学 |
开课时间: | 2013-01-16 |
课程语种: | 日语 |
中文简介: | 本讲是一个教程,给出了子模函数和离散凸性的一些本质。我的演讲内容如下:#子模和超模函数##子模块##分配格和集(Birkhoff Iri)#Submodular系统和超模系统##子模多面体和基多面体##对偶##多面体和拟阵##广义多面体##边缘矢量表征##交叉和相交子模函数#交叉定理及其等价##交叉定理##离散分离定理# #Fenchel对偶定理## Minkowski和定理#最小标准基数和子模块函数最小化## Lexicographically Optimal Base ##最小标准基数##子模块函数最小化#最大权重基础问题##贪心算法## Lovasz扩展## Subgradients和Subdifferentials子模函数#Discrete Convex A.分析##L♮凸函数##M♮凸函数##离散分离定理## Fenchel对偶定理 |
课程简介: | The present talk is a tutorial one and gives some essence of submodular functions and discrete convexity. The contents of my talk will be the following: # Submodular and Supermodular Functions ## Submodularity ## Distributive Lattices and Posets (Birkhoff-Iri) # Submodular Systems and Supermodular Systems ## Submodular polyhedron and Base Polyhedron ## Duality ## Polymatroids and Matroids ## Generalized Polymatroids ## Characterization by Edge-vectors ## Crossing- and Intersecting-submodular Functions # Intersection Theorem and Its Equivalents ## Intersection Theorem ## Discrete Separation Theorem ## Fenchel Duality Theorem ## Minkowski Sum Theorem # Minimum-Norm Base and Submodular Function Minimization ## Lexicographically Optimal Base ## Minimum-Norm Base ## Submodular Function Minimization # Maximum Weight Base Problem ## Greedy Algorithm ## Lovasz extension ## Subgradients and Subdifferentials of Submodular Functions # Discrete Convex Analysis ## L♮-convex Functions ## M♮-convex Functions ## Discrete Separation Theorem ## Fenchel Duality Theorem |
关 键 词: | 子模函数; 离散凸性; 超模函数 |
课程来源: | 视频讲座网 |
最后编审: | 2019-09-08:lxf |
阅读次数: | 183 |