首页应用数学
   首页概率论
   首页人口学
0


捕获-再捕获的非参数密度估计

Nonparametric Density Estimation for Capture-Recapture
课程网址: http://videolectures.net/nipsworkshops2012_kurtz_estimation/  
主讲教师: Zachary Kurtz
开课单位: 卡内基梅隆大学
开课时间: 2013-01-16
课程语种: 英语
中文简介:
捕获重新捕获(CRC)是一种通过组合多个不完整的人口单位列表来估计人口规模的方法。准确的估计器必须模拟列表之间的依赖关系。一种依赖是单位级别列表依赖,其中先前的捕获直接降低了后续捕获的概率。另一种依赖性间接地来自跨单位的异质性包含概率。现有的非参数CRC方法不允许两种依赖性依赖于协变量。我们用新的两阶段方法填补了这个空白。在第一阶段,我们估计捕获模式的条件密度作为协变量的函数。在第二阶段,我们通过局部应用对数线性模型来估算未观察到的捕获模式的条件密度(无捕获)。 Horvitz Thompson风格的人口估计量。
课程简介: Capture-recapture (CRC) is a way to estimate the size of a population by combining multiple incomplete lists of population units. Accurate estimators must model dependence between lists. One kind of dependence is unit-level list dependence, in which previous capture directly reduces the probability of subsequent capture. Another kind of dependence arises indirectly from the heterogeneity in capture probabilities across units. Existing nonparametric CRC methods do not allow both kinds of dependence to depend on covariates. We fill this gap with a new two-stage approach. In the first stage, we estimate the conditional densities of the capture pattern as a function of the covariates. In the second stage, we impute the conditional density of the unobserved capture pattern (no captures) by applying a log-linear models locally. A Horvitz-Thompson style population estimator follows.
关 键 词: 捕获重新捕获; 人口规模; 协变量
课程来源: 视频讲座网
最后编审: 2019-09-08:lxf
阅读次数: 48