0


交替极小化的可证矩阵完备化

Provable Matrix Completion using Alternating Minimization
课程网址: http://videolectures.net/nipsworkshops2012_netrapalli_minimizatio...  
主讲教师: Praneeth Netrapalli
开课单位: 德克萨斯大学
开课时间: 2013-01-16
课程语种: 英语
中文简介:
交替最小化已成为涉及低秩矩阵的大规模机器学习问题的流行启发式算法。但是,对其性能的理论保证很少(如果有的话)。在这项工作中,我们研究了[RFP07]中首次提出的流行矩阵传感问题的自然交替最小化算法;该问题要求从其少量线性测量中恢复未知的低秩矩阵。我们表明,在合适的RIP条件下,交替最小化线性收敛到真实矩阵。我们的结果可以从随机抽样的条目扩展到矩阵完成。我们的分析仅使用基本线性代数和一个事实,即在RIP下,交替最小化可以被视为正交迭代的噪声版本(用于计算矩阵的顶部奇异向量)。
课程简介: Alternating minimization has emerged as a popular heuristic for large-scale machine learning problems involving low-rank matrices. However, there have been few (if any) theoretical guarantees on its performance. In this work, we investigate the natural alternating minimization algorithm for the popular matrix sensing problem first formulated in [RFP07]; this problem asks for the recovery of an unknown low-rank matrix from a small number of linear measurements thereof. We show that under suitable RIP conditions, alternating minimization linearly converges to the true matrix. Our result can be extended to matrix completion from randomly sampled entries. Our analysis uses only elementary linear algebra and exploits the fact that, under RIP, alternating minimization can be viewed as a noisy version of orthogonal iteration (which is used to compute the top singular vectors of a matrix).
关 键 词: 交替最小化; 低秩矩阵; 流行矩阵传感
课程来源: 视频讲座网
最后编审: 2021-06-27:zyk
阅读次数: 78