0


行列式点过程

Determinantal Point Processes
课程网址: http://videolectures.net/nipsworkshops2012_taskar_point/  
主讲教师: Ben Taskar
开课单位: 宾夕法尼亚大学
开课时间: 2013-01-23
课程语种: 英语
中文简介:
决策点过程(DPP)在随机矩阵理论和量子物理学中出现,作为具有负相关的随机变量的模型。在众多卓越的属性中,它们为精确推理提供易处理算法,包括计算边缘,计算某些条件概率和采样。 DPP是子集选择问题的自然模型,其中多样性是优选的。例如,它们可用于选择不同的句子组以形成文档摘要,或返回相关但变化的文本和图像搜索结果,或检测视频中的非重叠多个对象轨迹。在我们最近的工作中,我们发现了一种新的分解和DPP的双重表示,可以对指数大小的结构集进行有效推理。我们基于子集大小的DPP开发了基于Newton身份的新推理算法。我们还从几种类型的观察中推导出DPP的有效参数估计。我们展示了该模型在几种自然语言和视觉任务上的优势:提取文档摘要,图像搜索结果多样化以及图像中多人关节姿势估计问题。
课程简介: Determinantal point processes (DPPs) arise in random matrix theory and quantum physics as models of random variables with negative correlations. Among many remarkable properties, they offer tractable algorithms for exact inference, including computing marginals, computing certain conditional probabilities, and sampling. DPPs are a natural model for subset selection problems where diversity is preferred. For example, they can be used to select diverse sets of sentences to form document summaries, or to return relevant but varied text and image search results, or to detect non-overlapping multiple object trajectories in video. In our recent work, we discovered a novel factorization and dual representation of DPPs that enables efficient inference for exponentially-sized structured sets. We developed a new inference algorithm based on Newton identities for DPPs conditioned on subset size. We also derived efficient parameter estimation for DPPs from several types of observations. We demonstrated the advantages of the model on several natural language and vision tasks: extractive document summarization, diversifying image search results and multi-person articulated pose estimation problems in images.
关 键 词: 决策点过程; 随机矩阵理论; 量子物理学
课程来源: 视频讲座网
最后编审: 2019-09-08:lxf
阅读次数: 202