0


基于动态规划的多周期信息检索与最优相关反馈

Multi Period Information Retrieval and Optimal Relevance Feedback using Dynamic Programming
课程网址: http://videolectures.net/onlinelearning2012_sloan_dynamic_program...  
主讲教师: Marc Sloan
开课单位: 伦敦大学学院
开课时间: 2013-05-28
课程语种: 英语
中文简介:
在多周期信息检索中,我们将检索视为随机但可控的过程,过程中的排名动作持续控制检索系统的动态,并且找到最优的排序策略以最大化整体用户的满意度。我们的推导显示了关于文档相关性的后验概率如何通过点击从用户反馈演变而来的有趣属性,并提供了用于合并不同点击模型的插件框架。基于Multi Armed Bandit理论,我们使用动态排名规则提出了一个简单的框架实现,该规则考虑了排名和文档探索。我们还会查看相关性反馈,其中我们使用动态编程来根据总体支付而不是即时奖励在每次迭代中做出排名决策。我们表明,结果多样化中使用的文档关联对相关性反馈及其有效性具有重大影响。
课程简介: In Multi Period Information Retrieval we consider retrieval as a stochastic yet controllable process, the ranking action during the process continuously controls the retrieval system's dynamics, and an optimal ranking policy is found in order to maximise the overall users' satisfaction. Our derivations show interesting properties about how the posterior probability of the documents relevancy evolves from users feedbacks through clicks, and provides a plug-in framework for incorporating different click models. Based on the Multi-Armed Bandit theory, we propose a simple implementation of our framework using a dynamic ranking rule that takes rank bias and exploration of documents into account. We also look at relevance feedback, where we use dynamic programming to make a ranking decision at each iteration according to the overall future payoff, rather than the instant reward. We show that document correlations used in result diversification have a significant impact on relevance feedback and its effectiveness.
关 键 词: 信息检索; 概率; 文档探索
课程来源: 视频讲座网
最后编审: 2019-09-12:lxf
阅读次数: 47