0


拟南芥学习基因调控网络的研究

Learning gene regulatory networks in Arabidopsis Thaliana
课程网址: http://videolectures.net/pmnp07_needham_lgrn/  
主讲教师: Chris Needham
开课单位: 利兹大学
开课时间: 2007-09-07
课程语种: 英语
中文简介:
基因调控网络控制着所有生物体中细胞的功能发育和生物过程。基因作为复杂系统的一部分相互调节,其中获得理解至关重要。例如,在人类中发现完整的基因调控网络将允许鉴定引起疾病的基因,并且可以用于药物发现以鉴定与感兴趣的化合物相互作用的基因。类似地,在植物中,基因调控网络的知识将允许发展胁迫(干旱/盐/温度)抗性作物。从微阵列数据中学习具有数千种基因的大型基因调控网络是极具挑战性的。该研究旨在围绕基因调控文献建立已知网络,并评估其他基因可能发挥调节作用或处于相同的调节途径。基因调控网络用贝叶斯网络建模。基因exp使用大规模公共微阵列数据似乎是一个非常有用的起点,用于通知未来的实验,以确定基因调控网络。量化水平,并在网络结构学习算法中使用贪婪的爬山搜索方法。已经证明将具有最佳解释力的额外基因包含在模型中是稳健的。在该分析中使用大量微阵列实验,特别是2466个NASC拟南芥微阵列,其在许多实验条件下含有超过2万个基因的基因表达水平。对这些数据的初步调查非常有希望。我们已经学会了由植物的生物钟调节的基因转录子网络(见图1)。显示的网络是从微阵列数据生成的,没有使用任何先验信息,但该方法设法识别时钟组件(TOC1,LHY,ELF3,ELF4,CCA1)之间的强因果关系,并将这些关系链接到其他关键调节器重要的过程(例如ZAT,myb和GATA转录因子)。
课程简介: Gene regulatory networks govern the functional development and biological processes of cells in all organisms. Genes regulate each other as part of a complex system, of which it is vitally important to gain an understanding. For example, discovery of the complete gene regulatory networks in humans would allow the identification of genes which cause disease, and could be used for drug discovery to identify genes interacting with compounds of interest. Similarly in plants knowledge of the gene regulatory networks would allow the development of stress (drought/salt/temperature) resistant crops. Learning large gene regulatory networks with thousands of genes with any certainty from microarray data is extremely challenging. This research aims to build around known networks from the literature on gene regulation, and assesses which other genes are likely to play a regulatory role or be in the same regulatory pathways. The gene regulatory networks are modelled with a Bayesian network. The gene expThe use of large scale public microarray data appears to be a very useful starting point for informing future experiments in order to determine gene regulatory networks.ression levels are quantised and a greedy hill climbing search method is used within a network structure learning algorithm. The inclusion of extra genes with the best explanatory power into the model has been demonstrated to be robust. Large sets of microarray experiments are used in this analysis, specifically 2466 NASC Arabidopsis thaliana microarrays containing gene expression levels of over twenty thousand genes in a number of experimental conditions. Initial investigation of this data is very promising. We have learned gene transcription sub-networks (see Figure 1) regulated by the plant’s circadian clock. The network shown was generated from microarray data without the use of any prior information, and yet the method managed to identify the strong causal relationships between clock components (TOC1, LHY, ELF3, ELF4, CCA1) and to link these to further key regulators of important processes (e.g. ZAT, myb and GATA transcription factors).
关 键 词: 基因调控; 生物体; 微阵列数据
课程来源: 视频讲座网
最后编审: 2019-09-13:lxf
阅读次数: 58