0


用后缀树结构增强图形数据库索引

Enhancing Graph Database Indexing By Suffix Tree Structure
课程网址: http://videolectures.net/prib2010_bonnici_egdi/  
主讲教师: Vincenzo Bonnici
开课单位: 卡塔尼亚大学
开课时间: 2010-10-14
课程语种: 英语
中文简介:
生物医学和化学数据库很大并且规模迅速增长。图自然地模拟这种类型的数据。为了充分利用这些图形数据库中丰富的信息,科学家们需要能够搜索所有出现的查询图的系统。为了有效地处理图搜索,提出了图的索引,表示和匹配的高级方法。本文提出了GraphGrepSX。该系统实现了高效的图搜索算法和先进的过滤技术.GraphGrepSX与SING,GraphFind,CTree和GCoding进行了比较。实验表明,GraphGrepSX在非常大的分子数据集合上优于比较系统。特别是,它减少了构建大型数据库索引的大小和时间,并且优于最流行的系统。
课程简介: Biomedical and chemical databases are large and rapidly growing in size. Graphs naturally model such kinds of data. To fully exploit the wealth of information in these graph databases, scientists require systems that search for all occurrences of a query graph. To deal efficiently with graph searching, advanced methods for indexing, representation and matching of graphs have been proposed. This paper presents GraphGrepSX. The system implements efficient graph searching algorithms together with an advanced filtering technique. GraphGrepSX is compared with SING, GraphFind, CTree and GCoding. Experiments show that GraphGrepSX outperforms the compared systems on a very large collection of molecular data. In particular, it reduces the size and the time for the construction of large database index and outperforms the most popular systems.
关 键 词: 生物医学; 化学数据库; 图形数据库
课程来源: 视频讲座网
最后编审: 2019-09-14:lxf
阅读次数: 80