0


抗癌药物活性的结构输出预测

Structured Output Prediction of Anti-Cancer Drug Activity
课程网址: http://videolectures.net/prib2010_rousu_sopa/  
主讲教师: Juho Rousu
开课单位: 赫尔辛基大学
开课时间: 2010-10-14
课程语种: 英语
中文简介:
我们提出了一种结构化的输出预测方法,用于分类潜在的抗癌药物。我们的QSAR模型将分子的描述作为输入,并一次预测针对一组癌细胞系的活性。细胞系之间的统计依赖性由马尔可夫网络编码,该马尔可夫网络具有作为节点的细胞系,并且边缘根据辅助数据集表示相似性。基于分子图,通过核表示分子。基于边缘的学习应用于将正确的多标签与不正确的多标签分开。多标记分类方法的性能显示在我们的NCI癌症数据实验中,该数据包含针对59种癌细胞系的药物样分子的癌症抑制潜力。在实验中,我们的方法优于现有技术的SVM方法。
课程简介: We present a structured output prediction approach for classifying potential anti-cancer drugs. Our QSAR model takes as input a description of a molecule and predicts the activity against a set of cancer cell lines in one shot. Statistical dependencies between the cell lines are encoded by a Markov network that has cell lines as nodes and edges represent similarity according to an auxiliary dataset. Molecules are represented via kernels based on molecular graphs. Margin-based learning is applied to separate correct multilabels from incorrect ones. The performance of the multilabel classification method is shown in our experiments with NCI-Cancer data containing the cancer inhibition potential of drug-like molecules against 59 cancer cell lines. In the experiments, our method outperforms the state-of-the-art SVM method.
关 键 词: 抗癌药物; 癌细胞系; 马尔可夫网络
课程来源: 视频讲座网
最后编审: 2019-09-14:lxf
阅读次数: 55