0


图结构的监督学习

Supervised Learning of Graph Structure
课程网址: http://videolectures.net/simbad2011_rossi_structure/  
主讲教师: Luca Rossi
开课单位: 威尼斯卡福斯卡里大学
开课时间: 2011-10-17
课程语种: 英语
中文简介:
在计算机视觉中,基于图形的表示已成功地用于对象形状和场景结构的抽象和识别。尽管如此,用于从训练示例集中学习结构表示的方法相对有限。在本文中,我们采用一种简单而有效的贝叶斯方法进行属性图学习。我们提出了一个朴素的节点观察模型,在该模型中,我们做出了一个重要的假设,即每个节点和每个边缘的观察都相互独立,然后我们提出了一种类似EM的方法来学习这些模型和最小消息长度准则的混合组件选择。此外,为了避免可能因节点对应关系的单个估计而产生偏差,我们决定估计所有可能匹配项上的采样概率。最后,我们展示了该方法在流行的计算机视觉任务(如2D和3D形状识别)上的实用性。
课程简介: Graph-based representations have been used with considerable success in computer vision in the abstraction and recognition of object shape and scene structure. Despite this, the methodology available for learning structural representations from sets of training examples is relatively limited. In this paper we take a simple yet effective Bayesian approach to attributed graph learning. We present a naïve node-observation model, where we make the important assumption that the observation of each node and each edge is independent of the others, then we propose an EM-like approach to learn a mixture of these models and a Minimum Message Length criterion for components selection. Moreover, in order to avoid the bias that could arise with a single estimation of the node correspondences, we decide to estimate the sampling probability over all the possible matches. Finally we show the utility of the proposed approach on popular computer vision tasks such as 2D and 3D shape recognition.
关 键 词: 计算机视觉; 贝叶斯方法; 属性图学习
课程来源: 视频讲座网
最后编审: 2019-09-21:cwx
阅读次数: 68